Имя материала: Логика

Автор: Ивин А. А.

1. понятие доказательства и его структура

 

Об И. Ньютоне рассказывают, что, будучи студентом, он начал изучение геометрии, как было принято в то время, с чтения «Геометрии» Евклида. Знакомясь с формулировками теорем, он видел, что они справедливы, и не изучал доказательства. Его удивляло, что люди затрачивают столько усилий, чтобы доказать совершенно очевидное.

Позднее Ньютон изменил свое мнение о необходимости доказательств в математике и других науках и хвалил Евклида как раз за безупречность и строгость его доказательств.

Невозможно переоценить значение доказательств в нашей жизни и особенно в науке. И тем не менее доказательства встречаются не так часто, как хотелось бы. К доказательствам прибегают все, но редко кто задумывается над тем, что означает «доказать», почему доказательство «доказывает», всякое ли утверждение можно доказать или опровергнуть, все ли нужно доказывать и т.п.

Наше представление о доказательстве как особой интеллектуальной операции формируется в процессе проведения конкретных доказательств. Изучая разные области знания, мы усваиваем и относящиеся к ним доказательства. На этой основе мы постепенно составляем - чаще всего незаметно для себя - общее интуитивное представление о доказательстве как таковом, его общей структуре, не зависящей от конкретного материала, о целях и смысле доказательства и т.д.

Изучение доказательства на конкретных его образцах и интересно, и полезно. Но также необходимо знакомство с основами логической теории доказательства, которая говорит о доказательствах безотносительно к области их применения. Практические навыки доказательства и интуитивное представление о нем достав точны для многих целей, но далеко не для всех. Практика и здесь, как обычно, нуждается в теории.

Логическая теория доказательства в основе своей проста и доступна, хотя ее детализация требует специального символического языка и другой изощренной техники современной логики.

Под доказательством в логике понимается процедура установления истинности некоторого утверждения путем приведения других утверждений, истинность которых уже известна и из которых с необходимостью вытекает первое.

В доказательстве различаются тезис - утверждение, которое нужно доказать, основание (аргументы) - те положения, с помощью которых доказывается тезис, и логическая связь между аргументами и тезисом. Понятие доказательства всегда предполагаете таким образом, указание посылок, на которые опирается тезис, и тех логических правил, по которым осуществляются преобразования утверждений в ходе доказательства.

К примеру, нужно доказать тезис «Все металлы проводят электрически ток». Подбираем в качестве аргументов утверждения, которые являются, во-первых, истинными и из которых, во-вторых, логически вытекает тезис. В качеств таких утверждений можно принять, в частности, следующие: «Все веществ? имеющие в своей кристаллической решетке свободные электроны, проводя электрический ток» и «Все металлы имеют в своей кристаллической решетке свободные электроны». Строим умозаключение:

 

Все вещества, имеющие в своей кристаллической решетке свободные

электроны, проводят электрический ток.

Все металлы имеют в своей кристаллической решетке свободные электроны.

Все металлы проводят электрический ток.

 

Данное умозаключение является правильным (оно представляет собой категорический силлогизм), посылки его истинны; значит, умозаключение является доказательством исходного тезиса.

 

Доказательство - это правильное умозаключение с истинными посылками. Логическую основу каждого доказательства (его схему) составляет логический закон.

Доказательство - это всегда в определенном смысле принуждение.

 

Философ XVII в. Т. Гоббс до сорока лет не имел представления о геометрии». Впервые в жизни прочитав формулировку теоремы Пифагора, он воскликнул:  «Боже, но это невозможно!» Но затем шаг за шагом он проследил все доказательство, убедился в его правильности и смирился. Ничего другого, собственно, и не оставалось.

Мы уверены, к примеру, что важными показателями богатства нашего языка являются его индивидуальность, стилистическая гибкость, умение обо всем говорить «своими словами». В таком случае мы должны признать также, что язык обезличенный, лишенный индивидуальности, основывающийся на чужих оборотах и выражениях и потому серый, бездушный и трафаретный, не может считаться богатым и полноценным.

 

Источником «принудительной силы» доказательств являются логические законы мышления, лежащие в их основе. Именно данные законы, действуя независимо от воли и желаний человека, заставляют в процессе доказательства с необходимостью принимать одни утверждения вслед за другими и отбрасывать то, что несовместимо с принятым.

Задача доказательства - исчерпывающе утвердить обоснованность доказываемого тезиса.

Раз в доказательстве речь идет о полном подтверждении, связь между аргументами и тезисом должна носить дедуктивный характер.

По своей форме доказательство - дедуктивное умозаключение или цепочка таких умозаключений, ведущих от истинных посылок к доказываемому положению.

 

Обычно доказательство протекает в очень сокращенной форме.

Видя чистое небо, мы заключаем- «Погода будет хорошей». Это доказательство, но до предела сжатое. Опушено общее утверждение: «Всегда, когда небо чистое, погода будет хорошей». Опущена также посылка: «Небо чистое». Оба эти утверждения очевидны, их незачем произносить вслух.

Встретив идущего по улице человека, мы отмечаем: «Обычный прохожий». За этой констатацией опять-таки стоит целое рассуждение. Но оно настолько обычное и простое, что протекает почти неосознанно.

Писатель В. В. Вересаев приводит такой отзыв одного генерала о неудачном укреплении, которое построил его предшественник: «Я узнаю моего умного предшественника. Если человек большого ума задумает сделать глупость, то сделает такую, какой все дураки не выдумают». Это рассуждение - обычное доказательство, заключение которого опущено. Наши разговоры полны доказательств, но мы их почти не замечаем.

 

Старая латинская пословица говорит: «Доказательства ценятся по качеству, а не по количеству». В самом деле, дедукция из истины дает только истину. Если найдены верные аргументы и из них дедуктивно выведено доказываемое положение, доказательство состоялось, и ничего более не требуется.

Нередко в понятие доказательства вкладывается более широкий смысл: под доказательством понимается любая процедура обоснования истинности тезиса, включающая как дедукцию, так и индуктивное рассуждение, ссылки на связь доказываемого положения с фактами, наблюдениями и т.д. Расширительное истолкование доказательства является обычным в гуманитарных науках. Оно встречается и в экспериментальных, опирающихся на наблюдения рассуждениях.

Как правило, широко понимается доказательство и в обычной жизни. Для подтверждения выдвинутой идеи активно привлекаются факты, типичные в определенном отношении явления и т.п. Дедукции в этом случае, конечно, нет, речь может идти только об индукции. Но тем не менее предлагаемое обоснование нередко называют доказательством.

Широкое употребление понятия «доказательство» само по себе не ведет к недоразумениям. Но только при одном условии. Нужно постоянно иметь в виду, что индуктивное обобщение, переход от частных фактов к общим заключениям, дает не достоверное, а лишь вероятное знание.

Определение доказательства включает два центральных понятия логики: понятие истины и понятие логического следования. Оба эти понятия не являются в достаточной мере ясным и, значит, определяемое через них понятие доказательства также не может быть отнесено к ясным.

Многие утверждения не являются ни истинными, ни ложными, т.е. лежат вне «категории истины». Оценки, нормы, советы, декларации, клятвы, обещания и т.п. не описывают каких-то ситуаций, а указывают, какими они должны быть, в каком направлении их нужно преобразовать. От описаний требуется, чтобы они соответствовали действительности и являлись истинными. Удачный совет, приказ и т.п. характеризуется как эффективный или целесообразный, но не как истинный. Высказывание «Вода кипит» истинно, если вода действительно кипит; команда же «Вскипятите воду!» может быть целесообразной, но не имеет отношения к истине. Очевидно, что оперируя выражениями, не имеющими истинностного значения, можно и нужно быть и логичным и доказательным. Встает, таким образом, вопрос о существенном расширении понятия доказательства, определяемого в терминах истины. Им должны охватываться не только описания, но и утверждения типа оценок или норм. Задача переопределения доказательства пока не решена ни логикой оценок ни деонтической (нормативной) логикой. Это делает понятие доказательства не вполне ясным по своему смыслу.

Не существует, далее, единого понятия логического следования. Логических систем, претендующих на определение этого понятия, в принципе бесконечно много. Ни одно из имеющихся в современной логике определений логического закона и логического следования не свободно от критики и от того, что принято называть «парадоксами логического следования».

Образцом доказательства, которому в той или иной мере стремятся следовать во всех науках, является математическое доказательство. Долгое время считалось, что оно представляет собой ясный и бесспорный процесс. В нашем веке отношение к математическому доказательству изменилось. Сами математики разбились на группировки, каждая из которых придерживается своего истолкования доказательства. Причиной этого послужило, прежде всего изменение представления о лежащих в основе доказательства логических принципах. Исчезла уверенность в их единственности и непогрешимости. Полемика по поводу математического доказательства показала, что нет критериев доказательства, не зависящих ни от времени, ни от того, что требуется доказать, ни от тех, кто использует критерий. Математическое доказательство является парадигмой доказательства вообще, но даже в математике доказательство не является абсолютным и окончательным.

 

Страница: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 |