Имя материала: Нейрофизиология и высшая нервная деятельность детей и подростков

Автор: Смирнов Валерий Марксович

3.3.2. роль проницаемости клеточной мембраны и ее поверхностных зарядов

 

А. Терминология. В настоящее время различные авторы по-разному трактуют термины «проницаемость» и «проводимость». Под проницаемостью клеточной мембраны мы понимаем ее способность пропускать воду и частицы - заряженные (ионы) и незаряженные согласно законам диффузии и фильтрации. Проницаемость клеточной мембраны определяется следующими факторами:

1) наличием в составе мембраны различных ионных каналов -управляемых (с воротным механизмом) и неуправляемых (каналы утечки); 2) размерами каналов и размерами частиц; 3) растворимостью частиц в мембране (клеточная мембрана проницаема для растворимых в ней липидов и непроницаема для пептидов).

Термин «проводимость» следует использовать только применительно к заряженным частицам. Следовательно, под проводимостью мы понимаем способность заряженных частиц (ионов) проходить через клеточную мембрану согласно электрохимическому градиенту (совокупность электрического и концентрационного градиентов).

Как известно, ионы, подобно незаряженным частицам, переходят через мембрану из области с высокой концентрацией в область с низкой концентрацией. При большом градиенте концентрации и хорошей проницаемости мембраны, разделяющей соответствующие растворы, проводимость ионов может быть высокая, при этом наблюдается односторонний ток ионов. Когда концентрация ионов по обе стороны мембраны уравняется, проводимость ионов уменьшится, односторонний ток ионов прекратится, хотя проницаемость сохранится прежней - высокой. Кроме того, проводимость иона при неизменной проницаемости мембраны зависит и от заряда иона: одноименные заряды отталкиваются, разноименные притягиваются, т.е. важную роль в проводимости иона играет его электрический заряд. Возможна ситуация, когда при хорошей проницаемости мембраны проводимость ионов через мембрану оказывается низкой или нулевой, - в случае отсутствия движущей силы (концентрационного и /или электрического градиентов).

Таким образом, проводимость иона зависит от его электрохимического градиента и от проницаемости мембраны: чем они больше, тем лучше проводимость иона через мембрану. Перемещения ионов в клетку и из клетки согласно концентрационному и электрическому градиентам в состоянии покоя клетки осуществляются преимущественно через неуправляемые (без воротного механизма) каналы (каналы утечки). Неуправляемые каналы всегда открыты, они практически не меняют своей пропускной способности при электрическом воздействии на клеточную мембрану и ее возбуждении. Неуправляемые каналы подразделяются на ионоселективные каналы (например, калиевые медленные неуправляемые каналы) и иононеселективные каналы. Последние пропускают различные ионы: К+, Na+, C1-.

Б. Роль проницаемости клеточной мембраны и различных ионов в формировании ПП (рис. 3.2.). Сосуд разделен полупроницаемой мембраной. Обе его половины заполнены раствором K2SО4 различной концентрации (C1 и C2), причем C1 < С2. Мембрана проницаема для иона К+ и непроницаема для SО42. Ионы К+ перемещаются согласно концентрационному градиенту из раствора С2 в раствор С1. Поскольку ионы SО42 не могут пройти в раствор С1, где их концентрация тоже ниже, мембрана поляризуется и между двумя ее поверхностями возникает разность электрических потенциалов, соответствующая равновесному калиевому потенциалу (Ек).

 

Рис. 3.2. Модельный опыт, иллюстрирующий роль избирательной проницаемости мембраны для ионов К+ (+) и S04 (-) в формировании ПП. 1,2 - электроды; 3 - регистратор;

С - концентрация

 

Ионы Na+ и К+ в живой клетке, находящейся в состоянии покоя, также перемещаются через мембрану согласно законам диффузии, при этом К+ из клетки выходит в значительно большем количестве, чем входит Na+ в клетку, поскольку проницаемость клеточной мембраны для К+ примерно в 25 раз больше проницаемости для Na+.

Органические анионы из-за своих больших размеров не могут выходить из клетки, поэтому внутри клетки в состоянии покоя отрицательных ионов оказывается больше, чем положительных. По этой причине клетка изнутри имеет отрицательный заряд. Интересно, что во всех точках клетки отрицательный заряд практически одинаков. Об этом свидетельствует одинаковая величина ПП при введении микроэлектрода на разную глубину внутрь клетки, как это имело место в опытах Ходжкина, Хаксли и Катца. Заряд внутри клетки является отрицательным как абсолютно (в гиалоплазме клетки содержится больше анионов, чем катионов), так и относительно наружной поверхности клеточной мембраны.

Калий является главным ионом, обеспечивающим формирование ПП. Об этом свидетельствуют результаты опыта с перфузией внутреннего содержимого гигантского аксона кальмара солевыми растворами. При уменьшении концентрации ионов К+ в перфузате ПП снижается, при увеличении их концентрации ПП повышается. В состоянии покоя клетки устанавливается динамическое равновесие между числом выходящих из клетки и входящих в клетку ионов К+. Электрический и концентрационный градиенты противодействуют друг другу: согласно концентрационному градиенту К+ стремится выйти из клетки, отрицательный заряд внутри клетки и положительный заряд наружной поверхности клеточной мембраны препятствуют этому. Когда концентрационный и электрический градиенты уравновесятся, число выходящих из клетки ионов К+ сравнивается с числом входящих ионов К+ в клетку. В этом случае на клеточной мембране устанавливается так называемый равновесный потенциал.

Равновесный потенциал для иона можно рассчитать по формуле Нернста. Концентрация положительно заряженного иона, находящегося снаружи, в формуле Нернста записывается в числителе, а иона, находящегося внутри клетки, - в знаменателе. Для отрицательно заряженных ионов расположение противоположное.

где Eion - потенциал, создаваемый данным ионом; R - газовая постоянная (8,31 Дм); Т - абсолютная температура (273+37°С); Z -валентность иона; F - постоянная Фарадея (9,65 х 104); [ion] i - концентрация иона внутри клетки inside; [ion] o - концентрация иона во внешней среде клетки outside. Равновесный потенциал иона Na+  у нервных клеток ENa = +55 мВ, иона калия Е Ek = -70 мВ.

Вклад Na+ и Cl- в создание ПП. Проницаемость клеточной мембраны в покое для иона Na+ очень низкая, намного ниже, чем для иона К+, тем не менее она имеется, поэтому ионы Na+ согласно концентрационному и электрическому градиентам стремятся и в небольшом количестве проходят внутрь клетки. Это ведет к уменьшению ПП, так как на внешней поверхности - клеточной мембраны суммарное число положительно заряженных ионов уменьшается, хотя и незначительно, а часть отрицательных ионов внутри клетки нейтрализуется входящими в клетку положительно заряженными ионами Na+. Вход иона Na+ внутрь клетки снижает ПП. Влияние Cl- на величину ПП противоположно и зависит от проницаемости клеточной мембраны для ионов Cl-. Дело в том, что ион Cl-, согласно концентрационному градиенту, стремится и проходит в клетку. Препятствует входу иона Cl-  в клетку электрический градиент, поскольку заряд внутри клетки отрицательный, как и заряд Cl-. Наступает равновесие сил концентрационного градиента, способствующего входу иона Cl-  в клетку, и электрического градиента, препятствующего входу иона Cl-  в клетку. Поэтому внутриклеточная концентрация ионов Cl- значительно меньше внеклеточной. При поступлении иона Cl-  внутрь клетки число отрицательных зарядов вне клетки несколько уменьшается, а внутри клетки увеличивается: ион Cl-  добавляется к крупным, белковой природы анионам, находящимся внутри клетки. Эти анионы из-за своих больших размеров не могут пройти через каналы клеточной мембраны наружу клетки - в интерстиций. Таким образом, ион Cl-, проникая внутрь клетки, увеличивает ПП. Частично, как и вне клетки, ионы Na+ и Cl- внутри клетки нейтрализуют друг друга. Вследствие этого совместное поступление ионов Na+ и Cl- внутрь клетки не сказывается существенно на величине ПП.

В. Определенную роль в формировании ПП играют поверхностные заряды самой клеточной мембраны и ионы Са2+  Наружная и внутренняя поверхности клеточной мембраны несут собственные электрические заряды, преимущественно с отрицательным знаком. Это полярные молекулы клеточной мембраны: гликолипиды, фосфюлипиды, гликопротеиды. Фиксированные наружные отрицательные заряды, нейтрализуя положительные заряды внешней поверхности мембраны, снижают ПП. Фиксированные внутренние отрицательные заряды клеточной мембраны, напротив, суммируясь с анионами внутри клетки, увеличивают ПП.

Роль ионов Са2+ в формировании ПП заключается в том, что они взаимодействуют с наружными отрицательными фиксированными зарядами мембраны клетки и нейтрализуют их, что ведет к увеличению и стабилизации ПП.

Таким образом, ПП - это алгебраическая сумма не только всех зарядов ионов вне и внутри клетки, но также алгебраическая сумма отрицательных внешних и внутренних поверхностных зарядов самой мембраны.

При проведении измерений потенциал окружающей клетку среды принимают равным нулю. Относительно нулевого потенциала внешней среды потенциал внутренней среды нейрона, как отмечалось, составляет величину порядка -60-80 мВ. Повреждение клетки приводит к повышению проницаемости клеточных мембран, в результате чего различие проницаемости для ионов К+ и Na+ уменьшается, ПП при этом снижается. Подобные изменения встречаются при ишемии ткани. У сильно поврежденных клеток ПП может снизиться до уровня донанновского равновесия, когда концентрация внутри и вне клетки будет определяться только избирательной проницаемостью клеточной мембраны в состоянии покоя клетки, что может привести к нарушению электрической активности нейронов. Однако и в норме происходит перемещение ионов согласно электрохимическому градиенту, однако ПП не нарушается.

3.3.3. Роль ионных насосов в формировании ПП

В результате непрерывного перемещения различных ионов через клеточную мембрану их концентрация внутри и вне клетки постепенно должна выравниваться. Однако, несмотря на постоянную диффузию ионов (утечка ионов), ПП клеток остается на одном уровне. Следовательно, кроме собственно ионных механизмов формирования ПП, связанных с различной проницаемостью клеточной мембраны и диффузией ионов, имеется активный механизм поддержания градиентов концентрации различных ионов внутри и вне клетки. Таким механизмом являются ионные насосы, в частности Na/K-насос (помпа).

Ионный насос - это транспортная система, обеспечивающая перенос иона с непосредственной затратой энергии вопреки концентрационному и электрическому градиентам (см. раздел 2.6.2). Если заблокировать освобождение энергии, например, динитрофенолом в течение 1 ч, то выведение ионов Na+из клетки сократится примерно в 100 раз. Как выяснилось, выведение ионов Na+ сопряжено с транспортом ионов К+, что можно продемонстрировать при удалении ионов К+из наружного раствора. Если ионов К+ на наружной стороне мембраны нет, то работа насоса блокируется, перенос ионов Na+ клетки в этом случае падает, составляя примерно 30\% от нормального уровня. Сопряженность транспорта ионов Na+ и К+ уменьшает расход энергии примерно в 2 раза по сравнению с той, которая потребовалась бы при несопряженном транспорте. В целом траты энергии на активный транспорт веществ огромны: только Na/K- насос потребляет 1/3 всей энергии, расходуемой организмом в покое. За 1 с один Na/K-насос (одна молекула белка) переносит 150-600 ионов Na+ Накопление Na+ в клетке стимулирует работу Na/K-насоса, уменьшение Na+ в клетке снижает его активность, поскольку снижается вероятность контакта ионов с соответствующим переносчиком. В результате сопряженного транспорта ионов Na+ и К+ поддерживается постоянная разность концентраций этих ионов внутри и вне клетки. Одна молекула АТФ обеспечивает один цикл работы Na/K- насоса - перенос 3 ионов Na+ за пределы клетки и 2 ионов К+ внутрь клетки. Асимметричный перенос ионов Na/K- насосом поддерживает избыток положительно заряженных частиц на наружной поверхности клеточной мембраны и отрицательных зарядов внутри клетки, что позволяет считать Na/K-насос структурой электрогенной, дополнительно увеличивающей ПП примерно на 5-10 мВ. Данный факт свидетельствует о том, что решающим фактором в формировании ПП является селективная проницаемость клеточной мембраны для разных ионов. Если уравнять проницаемость клеточной мембраны для всех ионов, то ПП будет составлять только 5-10 мВ - за счет работы N/K-помпы.

Одновременно с выведением Na+ из клетки он диффундирует обратно в клетку. Однако мембрана малопроницаема для Na+ , поэтому диффузия в обратном направлении происходит очень медленно. Для К + мембрана клеток в покое более проницаема, соответственно К+ диффундирует наружу гораздо быстрее. Ионный насос поддерживает разность концентраций ионов Na+ и К + вне и внутри клетки.

Нормальная величина ПП является необходимым условием возникновения процесса возбуждения клетки, т.е. возникновения и распространения ПД, инициирующего специфическую деятельность клетки.

Страница: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 |