Имя материала: Нейрофизиология и высшая нервная деятельность детей и подростков

Автор: Смирнов Валерий Марксович

4.6. распространение возбуждения в цнс

 

Все особенности распространения возбуждения в ЦНС объясняются ее нейронным строением: наличием химических синапсов, многократным ветвлением аксонов нейронов, наличием замкнутых нейронных путей. Этими особенностями являются следующие.

1. Иррадиация (дивергенция) возбуждения в ЦНС. Она объясняется ветвлением аксонов нейронов, их способностью устанавливать многочисленные связи с другими нейронами, наличием вставочных нейронов, аксоны которых также ветвятся (рис. 4.4, а).

Иррадиацию возбуждения можно наблюдать в опыте на спинальной лягушке, когда слабое раздражение вызывает сгибание одной конечности, а сильное - энергичные движения всех конечностей и даже туловища. Дивергенция расширяет сферу действия каждого нейрона. Один нейрон, посылая импульсы в кору большого мозга, может участвовать в возбуждении до 5000 нейронов.

Рис. 4.4. Дивергенция афферентных дорсальных корешков на спинальные нейроны, аксоны которых, в свою очередь, ветвятся, образуя многочисленные коллатерали (в), и конвергенция эфферентных путей от различных отделов ЦНС на α-мотонейрон спинного мозга (6)

 

1. Конвергенция возбуждения (принцип общего конечного пути) - схождение возбуждения различного происхождения по нескольким путям к одному и тому же нейрону или нейронному пулу (принцип шеррингтоновской воронки). Конвергенция возбуждения объясняется наличием многих аксонных коллатералей, вставочных нейронов, а также тем, что афферентных путей в несколько раз больше, чем эфферентных нейронов. На одном нейроне ЦНС может располагаться до 10 000 синапсов. Явление конвергенции возбуждения в ЦНС имеет широкое распространение. Примером может служить конвергенция возбуждения на спинальном мотонейроне. Так, к одному и тому же спинальному мотонейрону подходят первичные афферентные волокна (рис. 4.4, б), а также различные нисходящие пути многих вышележащих центров ствола мозга и других отделов ЦНС. Явление конвергенции весьма важно: оно обеспечивает, например, участие одного мотонейрона в нескольких различных реакциях. Мотонейрон, иннервирующий мышцы глотки, участвует в рефлексах глотания, кашля, сосания, чиханья и дыхания, образуя общий конечный путь для многочисленных рефлекторных дуг. На рис. 4.4, я показаны два афферентных волокна, каждое из которых отдает коллатерали к 4 нейронам таким образом, что 3 нейрона из общего их числа, равного 5, образуют связи с обоими афферентными волокнами. На каждом из этих 3 нейронов конвергируют два афферентных волокна.

На один мотонейрон может конвергировать множество коллатералей аксонов, до 10 000-20 000, поэтому генерация ПД в каждый момент зависит от общей суммы возбуждающих и тормозящих синаптических влияний. ПД возникают лишь в том случае, если преобладают возбуждающие влияния. Конвергенция может облегчать процесс возникновения возбуждения на общих нейронах в результате пространственной суммации подпороговых ВПСП либо блокировать его вследствие преобладания тормозных влияний (см. раздел 4.8).

3. Циркуляция возбуждения по замкнутым нейронным цепям. Она может продолжаться минуты и даже часы (рис. 4.5).

Рис. 4.5. Циркуляция возбуждения в замкнутых нейронных цепях по Лоренто де-Но (а) и по И.С.Беритову (б). 1,2,3- возбуждающие нейроны

 

Циркуляция возбуждения - одна из причин явления последействия, которое будет рассмотрено далее (см. раздел 4.7). Считают, что циркуляция возбуждения в замкнутых нейронных цепях - наиболее вероятный механизм феномена кратковременной памяти (см. раздел 6.6). Циркуляция возбуждения возможна в цепи нейронов и в пределах одного нейрона в результате контактов разветвлений его аксона с собственными дендритами и телом.

4. Одностороннее распространение возбуждения в нейронных цепях, рефлекторных дугах. Распространение возбуждения от аксона одного нейрона к телу или дендритам другого нейрона, но не обратно объясняется свойствами химических синапсов, которые проводят возбуждение только в одном направлении (см. раздел 4.3.3).

5. Замедленное распространение возбуждения в ЦНС по сравнению с его распространением по нервному волокну объясняется наличием на путях распространения возбуждения множества химических синапсов. Время проведения возбуждения через синапс затрачивается на выделение медиатора в синаптическую щель, распространение его до постсинаптической мембраны, возникновение ВПСП и, наконец, ПД. Суммарная задержка передачи возбуждения в синапсе достигает примерно 2 мс. Чем больше синапсов в нейрональной цепочке, тем меньше общая скорость распространения по ней возбуждения. По латентному времени рефлекса, точнее по центральному времени рефлекса, можно ориентировочно рассчитать число нейронов той или иной рефлекторной дуги.

6. Распространение возбуждения в ЦНС легко блокируется определенными фармакологическими препаратами, что находит широкое применение в клинической практике. В физиологических условиях ограничения распространения возбуждения по ЦНС связаны с включением нейрофизиологических механизмов торможения нейронов.

Рассмотренные особенности распространения возбуждения дают возможность подойти к пониманию свойств нервных центров.

4.7. СВОЙСТВА НЕРВНЫХ ЦЕНТРОВ

 

Рассматриваемые ниже свойства нервных центров объясняются некоторыми особенностями распространения возбуждения в ЦНС, особыми свойствами химических синапсов и свойствами мембран нервных клеток. Основными свойствами нервных центров являются следующие.

А. Фоновая активность нервных центров (тонус) объясняется следующим:

• спонтанной активностью нейронов ЦНС;

• гуморальным влиянием циркулирующих в крови биологически активных веществ (метаболиты, гормоны, медиаторы и др.), влияющих на возбудимость нейронов;

• афферентной импульсацией от различных рефлексогенных зон;

• суммацией миниатюрных потенциалов, возникающих в результате спонтанного выделения квантов медиатора из аксонов, образующих синапсы на нейронах;

• циркуляцией возбуждения в ЦНС.

Значение фоновой активности нервных центров заключается в обеспечении некоторого исходного уровня деятельного состояния центра и эффекторов. Этот уровень может возрастать или снижаться в зависимости от колебаний суммарной активности нейронов нервного центра-регулятора.

Б. Трансформация ритма возбуждения - это изменение числа импульсов, возникающих в нейронах центра на выходе, относительно числа импульсов, поступающих на вход данного центра.

Трансформация ритма возбуждения возможна как в сторону увеличения, так и в сторону уменьшения. Увеличению числа импульсов, возникающих в центре в ответ на афферентную импульсацию, способствуют иррадиация процесса возбуждения (см. раздел 4.6) и последействие. Уменьшение числа импульсов в нервном центре объясняется снижением его возбудимости за счет процессов пре- и постсинаптического торможения, а также избыточным потоком афферентных импульсов. При большом потоке афферентных влияний, когда уже все нейроны центра или нейронного пула возбуждены, дальнейшее увеличение афферентных входов не увеличивает число возбужденных нейронов.

В. Инерционность - сравнительно медленное возникновение возбуждения всего комплекса нейронов центра при поступлении к нему импульсов и медленное исчезновение возбуждения нейронов центра после прекращения входной импульсации. Инерционность центров связана с суммацией возбуждения и последействием.

I. Явление суммации возбуждения в ЦНС открыл И.М.Сеченов (1868) в опыте на лягушке: раздражение конечности лягушки слабыми редкими импульсами не вызывает реакции, а более частые раздражения такими же слабыми импульсами сопровождается ответной реакцией - лягушка совершает прыжок. Различают временную (последовательную) сулилацию и пространственную суммацию (рис. 4.6).

Временна́я суммация. На рис. 4.6 слева показана схема для экспериментального тестирования эффектов, вызываемых в нейроне ритмической стимуляцией аксона. Запись вверху позволяет видеть, что если ВПСП быстро следуют друг за другом, то они суммируются благодаря своему относительно медленному временному ходу (несколько миллисекунд), достигая в конце концов порогового уровня. Временная суммация обусловлена тем, что ВПСП от предыдущего импульса еще продолжается, когда приходит следующий импульс. Поэтому данный вид суммации называют также последовательной суммацией. Она играет важную физиологическую роль, потому что многие нейронные процессы имеют ритмический характер и, таким образом, могут суммироваться, давая начало надпороговому возбуждению в нейронных объединениях нервных центров.

Пространственная суммация (см. рис. 4.6, б). Раздельная стимуляция каждого из двух аксонов вызывает подпороговый ВПСП, тогда как при одновременной стимуляции обоих аксонов возникает ПД, что не может быть обеспечено одиночным ВПСП. Пространственная суммация связана с такой особенностью распространения возбуждения, как конвергенция.

2. Последействие - это продолжение возбуждения нервного центра после прекращения поступления к нему импульсов по афферентным нервным путям. Причинами последействия являются:

• длительное существование ВПСП, если ВПСП полисинаптический и высокоамплитудный; в этом случае при одном ВПСП возникает несколько ПД;

• многократные появления следовой деполяризации, что свойственно нейронам ЦНС; если следовая деполяризация достигает Екр, то возникает ПД;

• циркуляция возбуждения по замкнутым нейронным цепям (см. раздел 4.6).

 

Первые две причины действуют недолго - десятки или сотни миллисекунд, третья причина - циркуляция возбуждения - может продолжаться минуты и даже часы. Таким образом, особенность распространения возбуждения (его циркуляция) обеспечивает другое явление в ЦНС - последействие. Последнее играет важнейшую роль в процессах обучения - кратковременной памяти.

Г. Большая чувствительность ЦНС к изменениям внутренней среды: например, к изменению содержания глюкозы в крови, газового состава крови, температуры, к вводимым с лечебной целью различным фармакологическим препаратам. В первую очередь реагируют синапсы нейронов. Особенно чувствительны нейроны ЦНС к недостатку глюкозы и кислорода. При снижении содержания глюкозы в 2 раза ниже нормы могут возникнуть судороги. Тяжелые последствия для ЦНС вызывает недостаток кислорода в крови. Прекращение кровотока всего на 10 с приводит к очевидным нарушениям функций мозга: человек теряет сознание. Если кровоток прекращается на 8-12 мин, то возникают необратимые нарушения деятельности мозга; погибают многие нейроны, в первую очередь корковые, что ведет к тяжелым последствиям.

Д. Утомляемость нервных центров продемонстрировал Н.Е.Введенский в опыте на препарате лягушки при многократном рефлекторном вызове сокращения икроножной мышцы с помощью раздражения большеберцового (п. tibialis) и малоберцового (п. peroneus) нервов. В этом случае ритмическое раздражение одного нерва вызывает ритмическое сокращение мышцы, приводящее к ослаблению силы ее сокращения вплоть до полного отсутствия сокращения. Переключение раздражения на другой нерв сразу же вызывает сокращение той же мышцы, что свидетельствует о локализации утомления не в мышце, а в центральной части рефлекторной дуги (рис. 4.7).

При этом развивается постсинаптическая депрессия (привыкание, габитуация) - ослабление реакции центра на раздражения (афферентные импульсы), выражающееся в снижении постсинаптических потенциалов во время длительного раздражения или после него. Это ослабление объясняется расходованием медиатора, накоплением метаболитов, закислением среды при длительном проведении возбуждения по одним и тем же нейронным цепям.

Е. Пластичность нервных центров - способность нервных элементов к перестройке функциональных свойств. Основные проявления этого свойства следующие: посттетаническая потенциация и депрессия, доминанта, образование временных связей, а в патологических случаях - частичная компенсация нарушенных функций.

1. Посттетаническая потенциация (синаптическое облегчение) - это улучшение проведения в синапсах после короткого раздражения афферентных путей. Кратковременная активация увеличивает амплитуду постсинаптических потенциалов. Облегчение наблюдается и во время раздражения (вначале); в этом случае феномен называют тетанической потенциацией. Степень выраженности облегчения возрастает с увеличением частоты импульсов; облегчение максимально, когда импульсы поступают с интервалом в несколько миллисекунд.

Рис. 4.7. Схема опыта Н.Е.Введенского, иллюстрирующего локализацию утомления в рефлекторной дуге.

1 - раздражение большеберцового нерва; 2 - раздражение малоберцового нерва; 3 - полусухожильная мышца лягушки; 4 - кривая сокращения полусухожильной мышцы

 

Длительность посттетанической потенциации зависит от свойств синапса и характера раздражения. После одиночных стимулов она выражена слабо, после раздражающей серии потенциация (облегчение) может продолжаться от нескольких минут до нескольких часов. По-видимому, главной причиной возникновения синаптического облегчения является накопление Са2+ в пресинаптических окончаниях, поскольку Са2+, который входит в нервное окончание во время ПД, накапливается там, так как ионная помпа не успевает выводить его из нервного окончания. Соответственно увеличивается высвобождение медиатора при возникновении каждого импульса в нервном окончании, возрастает ВПСП. Кроме того, при частом использовании синапсов ускоряются синтез медиатора и мобилизация пузырьков медиатора; напротив, при редком использовании синапсов синтез медиаторов уменьшается - важнейшее свойство ЦНС. Поэтому фоновая активность нейронов способствует возникновению возбуждения в нервных центрах.

Значение синоптического облегчения, по-видимому, заключается в том, что оно создает предпосылки улучшения процессов переработки информации на нейронах нервных центров, что крайне важно, например, для обучения в ходе выработки условных рефлексов. Повторное возникновение явлений облегчения в нервном центре может вызвать переход центра из обычного состояния в доминантное.

1. Если раздражение продолжается, то в химических синапсах может наступить депрессия, по-видимому, вследствие истощения медиатора.

3. Доминанта - господствующий очаг возбуждения в ЦНС, подчиняющий себе функции других нервных центров. Явление доминанты открыл А.А.Ухтомский (1923) в опытах с раздражением двигательных зон большого мозга и наблюдением за возникающим сгибанием конечности животного. Как выяснилось, если раздражать корковую двигательную зону на фоне избыточного повышения возбудимости другого нервного центра, то обычного сгибания конечности не происходит. Вместо сгибания конечности раздражение двигательной зоны вызывает реакцию тех эффекторов, деятельность которых контролируется господствующим, т.е. доминирующим в данный момент в ЦНС, нервным центром.

В эксперименте доминанту можно получить многократной посылкой афферентных импульсов к определенному центру, гуморальными на него влияниями. Роль гормонов в образовании доминантного очага возбуждения демонстрирует опыт на лягушке:

весной у самца раздражение любого участка кожи вызывает не защитный рефлекс, а усиление обнимательного рефлекса. В условиях натурального поведения доминантное состояние нервных центров может быть вызвано метаболическими причинами.

Доминантный очаг возбуждения обладает рядом особых свойств, главными из которых являются следующие: инерционность, стойкость, повышенная возбудимость, способность «притягивать» к себе иррадиирующие по ЦНС возбуждения, способность оказывать угнетающие влияния на центры-конкуренты и другие нервные центры.

Значение доминантного очага возбуждения в ЦНС заключается в том, что на его базе формируется конкретная приспособительная деятельность, ориентированная на достижение полезных результатов. Например, на базе доминантного состояния центра голода реализуется пищедобывательное поведение; на базе доминантного состояния центра жажды запускается поведение, направленное на поиск воды. Успешное завершение данных поведенческих актов в итоге устраняет физиологические причины доминантного состояния центров голода и жажды. Доминанта играет важную роль в координационной деятельности ЦНС (см. раздел 4.9), в запоминании и переработке информации.

4. Компенсация нарушенных функций после повреждения того или иного центра - результат проявления пластичности ЦНС. Хорошо известны клинические наблюдения, когда у больных после кровоизлияний в вещество мозга повреждались центры регуляции мышечного тонуса и акта ходьбы. Тем не менее со временем отмечалось, что парализованная конечность постепенно начинает вовлекаться в двигательную активность, при этом нормализуется тонус ее мышц. Нарушенная двигательная функция частично, а иногда и полностью восстанавливается за счет большей активности сохранившихся нейронов и вовлечения в эту функцию других - «рассеянных» - нейронов в коре большого мозга с подобными функциями. Этому способствуют регулярные пассивные и активные движения.

Страница: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 |