Имя материала: Общая теория статистики

Автор: Елисеева Ирина Ильинична

5.8. показатели размера и интенсивности вариации

 

Абсолютные средние размеры вариации

Следующим этапом изучения вариации признака в совокупности является измерение характеристик силы, величины вариации. Простейшим из них может служить размах или амплитуда вариации -абсолютная разность между максимальным и минимальным значениями признака из имеющихся в изучаемой совокупности значений. Таким образом, размах вариации вычисляется по формуле

Поскольку величина размаха характеризует лишь максимальное различие значений признака, она не может измерять закономерную силу его вариации во всей совокупности. Предназначенный для данной цели показатель должен учитывать и обобщать все различия значений признака в совокупности без исключения. Число таких различий равно числу сочетаний по два из всех единиц совокупности; по данным табл. 5.6 оно составит: С^ = 10 153. Однако нет необходимости рассматривать, вычислять и осреднять все отклонения. Проще использовать среднюю из отклонений отдельных значений признака от среднего арифметического значения признака, а таковых всего 143. Но среднее отклонение значений признака от средней арифметической величины согласно известному свойству последней равно нулю. Поэтому показателем силы вариации выступает не алгебраическая средняя отклонений, а средний модуль отклонений:

По данным табл. 5.6 средний модуль, или среднее линейное отклонение, по абсолютной величине вычисляется как взвешенное по частоте отклонение по модулю середин интервалов от средней арифметической величины, т.е. по формуле

Это означает, что в среднем урожайность в изучаемой совокупности хозяйств отклонялась от средней урожайности по области на 6,85 ц/га. Простота расчета и интерпретации составляют положительные стороны данного показателя, однако математические свойства модулей «плохие»: их нельзя поставить в соответствие с каким-либо вероятностным законом, в том числе и с нормальным распределением, параметром которого является не средний модуль отклонений, а среднее квадратическое отклонение (в англоязычных программах для ЭВМ называемое «the standard deviation», сокращенно «s.d.» или просто «s», в русскоязычных - СКО). В статистической литературе среднее квадратическое отклонение от средней величины принято обозначать малой (строчной) греческой буквой сигма (ст) или s (см. гл. 7):

для ранжированного ряда

для интервального ряда

По данным табл. 5.6 среднее квадратическое отклонение урожайности зерновых составило:

Следует указать, что некоторое округление средней величины и середин интервалов, например до целых, мало отражается на величине σ, которая составила бы при этом 8,55 ц/га.

Среднее квадратическое отклонение по величине в реальных совокупностях всегда больше среднего модуля отклонений. Соотношение (у : а зависит от наличия в совокупностях резких, выделяющихся отклонений и может служить индикатором «засоренности» совокупности неоднородными с основной массой элементами: чем это соотношение больше, тем сильнее подобная «засоренность». Для нормального закона распределения σ : а = 1,2.

 

Понятие дисперсии

Квадрат среднего квадратического отклонения дает величину дисперсии σ2. Формула дисперсии:

простая (для несгруппйрованных данных):

или

взвешенная (для сгруппированных данных):

 

На дисперсии основаны практически все методы математической статистики. Большое практическое значение имеет правило сложения дисперсий (см. гл. 6).

 

Другие меры вариации

Еще одним показателем силы вариации, характеризующим ее не по всей совокупности, а лишь в ее центральной части, служит среднее квартцлъное расстояние, т.е. средняя величина разности между квартилями, обозначаемое далее как q:

 

Для распределения сельхозпредприятий по урожайности в табл. 5.2

q = (36,25 - 25,09): 2 = 5,58 ц/га. Сила вариации в центральной части совокупности, как правило, меньше, чем в целом по всей совокупности. Соотношение между средним модулем отклонений и средним квартальным отклонением также служит для изучения структуры вариации: большое значение такого соотношения говорит о наличии слабоварьирующего «ядра» и сильно рассеянного вокруг этого ядра окружения, или «гало» в изучаемой совокупности. Для данных табл. 5.6 соотношение а: q = 1,23, что говорит о небольшом различии силы вариации в центральной части совокупности и на ее периферии.

Для оценки интенсивности вариации и для сравнения ее в разных совокупностях и тем более для разных признаков необходимы относительные показатели вариации. Они вычисляются как отношения абсолютных показателей силы вариации, рассмотренных ранее, к средней арифметической величине признака. Получаем следующие показатели:

1) относительный размах вариации р:

2) относительное отклонение по модулю т:

3) коэффициент вариации как относительное квадратическое отклонение v:

4) относительное квартальное расстояние d:

где  q - среднее квартильное расстояние.

 

Для вариации урожайности по данным табл. 5,6 эти показатели составляют:

ρ = 42,4 : 30,3 = 1,4, или 140\%;

т = 6,85 : 30,3 = 0,226, или 22,6\%;

v = 8,44 : 30,3 = 0,279, или 27,9\%;

d= 5,58 : 30,3 = 0,184, или 18,4\%.

 

Оценка степени интенсивности вариации возможна только для каждого отдельного признакам совокупности определенного состава. Так, для совокупности сельхозпредприятий вариация урожайности в одном и том же природном регионе может быть оценена как слабая, если v < 10\%, умеренная при 10\% < v < 25\% и сильная при v > 25\%.

Напротив, вариация роста в совокупности взрослых мужчин или женщин уже при коэффициенте, равном 7\%, должна быть оценена и воспринимается людьми как сильная. Таким образом, оценка интенсивности вариации состоит в сравнении наблюдаемой вариации с некоторой обычной ее интенсивностью, принимаемой за норматив. Мы привыкли к тому, что урожайность, заработок или доход на душу, число жилых комнат в здании могут различаться в несколько и даже десятки раз, но различие роста людей хотя бы в полтора раза уже воспринимается как очень сильное.

Различная сила, интенсивность вариации обусловлены объективными причинами. Например, цена продажи доллара США в коммерческих банках Санкт-Петербурга на 24 января 1997 г. варьировала от 5675 до 5640 руб. при средней цене 5664 руб. Относительный размах вариации ρ = 35:5664 = 0,6\%. Такая малая вариация вызвана тем, что при значительном различии курса доллара немедленно произошел бы отлив покупателей из «дорогого» банка в более «дешевые». Напротив, цена килограмма картофеля или говядины в разных регионах России варьирует очень сильно - на десятки процентов и более. Это объясняется разными затратами на доставку товара из региона-производителя в регион-потребитель, т.е. пословицей «телушка за морем - полушка, да рубль перевоз».

 

Страница: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 |