Имя материала: Общая теория статистики

Автор: Елисеева Ирина Ильинична

7.4. влияние вида выборки на величину ошибки выборки

 

Как указывалось в п. 7.2, при проведении выборочного наблюдения используются различные способы формирования выборочной совокупности: случайный отбор - повторный или бесповторный, механический, серийный, типический. Вид выборки влияет на величину ошибки выборки. При бесповторном отборе формула средней ошибки выборки дополняется множителем

 

                                         

 

который корректирует величину ошибки выборки и в связи с изменением состава совокупности и вероятности попадания единиц в выборку. В серийной выборке дисперсия определяется как колеблемость между сериями:

 (7.14')

 

где x̌j - среднее значение признака х в у-й серии;

х̅ - среднее значение в целом по выборке;

r - число отобранных серий.

Формула (7.14') предполагает равенство серий по числу единиц, если это условие не выполняется, то в числитель выражения (7.14') вводится вес - число единиц в j-й серии, fj; тогда в знаменателе указывается не r, а . Межсерийная дисперсия представляет часть общей дисперсии признака х, и потому ее использование направлено на уменьшение ошибки выборки. Однако значение г намного меньше п, так как число отобранных гнезд намного меньше числа единиц наблюдения. Этот фактор увеличивает ошибку выборки. Его действие более значительно, нежели понижающее влияние межсерийной дисперсии - в результате ошибка серийной выборки в среднем больше ошибки выборки при отборе единицами.

При типическом отборе (стратифицированная или районированная выборка) дисперсия рассчитывается как средняя из внутрирайонных дисперсий:

 

                                                                                                                   (7.15')

где     s2ji - выборочная дисперсия признака х в j-м районе;

 

                                                                                                                            

где     пj - объем выборки в j-м районе;

т - число районов.

 

Очевидно, что по правилу сложения дисперсий величина s2 меньше, чем величина общей дисперсии.

Величина ошибки районированной выборки меньше величины ошибки простой (нерайонированной выборки).

Часто используется сочетание районированного отбора с отбором сериями. Такой вид выборки обеспечивает преимущества в организации выборки и уменьшение ошибки выборки. Дисперсия такой выборки представляет среднюю из межсерийных дисперсий для каждого j-го района:

                                                                                                                          (7.16)

 

где s2x̌j - межсерийная дисперсия в j-м районе;

 

                          ,

 

х̌ij - средняя в i-й серии  j-го района;

х̅j - средняя ву-м районе;

r- число серий, отобранных в j-м районе;

т - число районов.

 

Табл. 7.2 содержит формулы средней ошибки выборки для выборочной средней и выборочной относительной величины для разных видов выборки. В приведенных формулах требуют пояснения выражения дисперсий выборочной относительной величины.

При нерайонированной серийной выборке

                          ,

 

где     рj - доля единиц определенной категории в у-й серии;

р - доля единиц этой категории в выборке.

 

Таблица 7.2

Формулы средней ошибки выборочной средней и выборочной

относительной величины

    

Рассмотрим на примере влияние вида выборки на величину ошибки выборки. Исходные данные представлены в табл. 7.3.

Таблица 7.3

Показатели 60 предприятий легкой промышленности Санкт-Петербурга (по данным статистической отчетности за I полугодие 1995 г.)

 

пп

Форма

Собственнос-ти

Оборачиваемость

запасов, х1

Коэффициент покрытия, х2

пп

Форма

собственности

Оборачиваемость

запасов, х1

Коэффициент покрытия, х2

1

государственная

5,65

0,22

31

Частная

1,23

1,18

2

«

2,86

0,35

32

«

0,82

1,59

3

«

1,61

1,06

33

«

2,83

0,74

4

«

3,99

1,01

34

«

1,83

1,52

5

«

2,17

8,88

35

«

2,26

2,43

6

«

1,52

1,06

36

«

2,33

3,28

7

«

0,40

0,99

37

«

2,35

1,13

8

«

2,18

1,07

38

«

1,68

0,89

9

«

1,36

4,62

39

«

2,00

1,67

10

«

3,69

1,40

40

«

2,64

1,48

11

частная

0,45

1,34

41

«

2,75

1,51

12

«

1,0

1,16

42

«

3,29

5,96

13

«

2,05

2,00

43

«

1,6

1,38

14

«

2,36

1,43

44

«

            1,90

2,39

15

«

4,90

1,76

45

«

3,27

3,62

16

«

3,12

1,26

46

«

3,49

0,46

17

«

1,36

1,89

47

«

2,92

1,26

18

«

1,56

12,36

48

смешання

3,22

0,78

19

«

4,84

1,23

49

«

2,61

1,67

20

«

1,23

3,26

50

«

5,17

0,95

21

«

0,81

2,22

51

«

8,63

0,96

22

«

0,7

1,16

52

«

1,06

2,51

23

«

0,87

1,21

53

«

2,13

3,49

24

«

0,20

1,45

54

«

2,03

1,22

25

«

1,71

4,04

55

«

1,82

2,92

26

«

1,83

2,07

56

«

3,12

1,54