Имя материала: Общая теория статистики

Автор: Елисеева Ирина Ильинична

7.9. проверка гипотезы о законе распределения

 

Одна из важнейших задач анализа вариационных рядов заключается в выявлении закономерности распределения и определении ее характера. Основной путь в выявлении закономерности распределения - построение вариационных рядов для достаточно больших со-вокупностей. Большое значение для выявления закономерностей распределения имеет правильное построение самого вариационного ряда:  выбор числа групп и размера интервала варьирующего признака.

Когда мы говорим о характере, типе закономерности распределения, то имеем в виду отражение в нем общих условий, определяющих вариацию. При этом речь всегда идет о распределениях качественно однородных явлений. Общие условия, определяющие тип закономерности распределения, познаются анализом сущности явления, тех его свойств, которые определяют вариацию изучаемого признака. Следовательно, должна быть выдвинута какая-то научная гипотеза, обосновывающая определенный тип теоретической кривой распределения.

Под теоретической кривой распределения понимается графическое изображение ряда в виде непрерывной линии изменения частот в вариационном ряду, функционально связанного с изменением вариантов (значений признака). Теоретическое распределение может быть выражено аналитически - формулой, которая связывает частоты вариационного ряда и соответствующие значения признака. Такие алгебраические формулы носят название законов распределения.

Большое познавательное значение имеет сопоставление фактических кривых распределения с теоретическими.

Как уже отмечалось, часто пользуются типом распределения, которое называется нормальным. Формула функции плотности нормального распределения:

                                          .

 

Следовательно, кривая нормального распределения может быть построена по двум параметрам - средней арифметической ц и среднему квадратическому отклонению ст.

Гипотезы о распределениях заключаются в том, что выдвигается предположение о том, что распределение в генеральной совокупности подчиняется какому-то определенному закону. Проверка гипотезы состоит в том, чтобы на основании сравнения фактических (эмпирических) частот с предполагаемыми (теоретическими) частотами сделать вывод о соответствии фактического распределения гипотетическому распределению. Может проводиться и сравнение частостей.

Под гипотетическим распределением необязательно понимается нормальное распределение. Может быть выдвинута гипотеза о биномиальном распределении, распределении Пуассона и т.д. Причина частого обращения к нормальному распределению в том, что в этом типе распределения выражается закономерность, возникающая при взаимодействии множества случайных причин, когда ни одна из них не имеет преобладающего влияния. Закон нормального распределения лежит в основе многих теорем математической статистики, применяемых для оценки репрезентативности выборок, при измерении связей и т. д. В социально-экономической статистике нормальное распределение встречается редко, но сравнение с ним важно для выяснения степени и характера отклонения от него фактического распределения.

В главе 5 отмечалось, что близость средней арифметической величины, медианы и моды указывает на вероятное соответствие изучаемого распределения нормальному закону. Но более полная и точная проверка соответствия распределения гипотезе о нормальном законе производится с использованием специальных критериев, из которых рассмотрим наиболее употребимый критерий c2 (хи-квадрат) К. Пирсона.

Для проверки гипотезы о соответствии эмпирического распределения закону нормального распределения необходимо частоты (частости) фактического распределения сравнить с частотами (частостями) нормального распределения. Значит, нужно по фактическим данным вычислить теоретические частоты кривой нормального распределения f̂  по формуле (для дискретных рядов):

                                          ,                                  (7.27)

 

где п - объем выборки;

i - величина интервала вариационного ряда.

 

Значение ординат кривой нормального распределения f(t) можно получить по таблицам значения функции:

                                          .

Проверяемая гипотеза формулируется как Н0:  fj = f̂j альтернаивная - как Н1: fj ≠ f̂j.

Проверка гипотезы требует, чтобы был построен теоретический ряд распределения с частотами f̂j, соответствующими нормальному закону, при тех же значениях параметров распределения

                                         

 

Методика построения теоретического ряда такова:

1. По фактическому интервальному ряду (табл. 5.6) вычисляются значения / для каждой группь< хозяйств по формуле (для интервальных рядов):

  -для начала и конца интервала.

 

2. Вычисляется вероятность попадания единицы наблюдения в данный интервал при выполнении гипотезы о нормальном законе:

                                          ,

где  |tj| > |tj+1|

 

3. Определяется теоретическая частота в данной группе, равная произведению объема совокупности на вероятность попадания в данный интервал:

                                         

 

4. Находится значение критерия c2 по формуле

                                                                                                                                        (7.28)

 

где k — число категорий ряда распределения;

j - номер категории;

fj - частота эмпирического распределения;

f̂j - частота теоретического распределения.

 

При расчете c2 частоты можно заменить частостями:

                                                                                                                           (7.29)

 

где  pj - частости эмпирического распределения;

pj - вероятности теоретического распределения.

 

При этом, согласно Ф. Йейтсу (Jates), группы с теоретическими частотами менее 5 принято объединять, что снижает влияние случайных ошибок (см. [6]).

Если все эмпирические частоты равны соответствующим теоретическим частотам, то c2 равно нулю. Очевидно, что чем больше отличаются эмпирические и теоретические частоты, тем c2 больше; если расхождение несущественно, то c2 должно быть малым. Имеются специальные таблицы критических значений c2  при 5\%-ном и 1\%-ном уровнях значимости. Критические значения зависят от числа степеней свободы (d.f. - degrees of freedom) и уровня значимости.

Число степеней свободы рассчитывается так: если эмпирический ряд распределения имеет k категорий, то k эмпирических частот f1, f2, …, fk  должны быть связаны следующим соотношением:  Если параметры теоретического распределения известны, то только k - 1 частот могут принимать произвольные значения, т. е. свободно варьировать, а последняя частота может быть найдена из указанного соотношения. Поэтому говорят, что система из k частот благодаря наличию одной связи теряет одну «степень свободы» и имеет только k — 1 степеней свободы. Кроме того, если при нахождении теоретических частот р параметров теоретического распределения неизвестны, то они должны быть найдены по данным эмпирического ряда. Это накладывает на эмпирические частоты еще р связей, благодаря чему система теряет еще р степеней свободы. Таким образом, число свободно варьируемых частот (а значит, и число степеней свободы) становится равным:

d.f. = (k - 1) - р = k - (р + 1).                                                (7.30)

Полученное значение критерия c2 сравнивается с табличным при числе степеней свободы, равном числу групп (с условием Ф. Йейтса), за минусом трех - по числу фиксированных параметров в формуле нормального закона распределения и с учетом равенства сумм теоретических и фактических частот (см. приложение, табл. 4).

В первой графе этой таблицы дано число степеней свободы, а в заголовках граф - уровни значимости. Если фактическое значение c2  превышает табличное при том же числе степеней свободы, то вероятность соответствия распределения нормальному закону меньше указанной. Результаты расчета c2  по данным табл. 5.6 (глава 5) приведены в табл. 7.5 при х = 30,3; s = 8,44.

Сумма теоретических частот нормального распределения меньше суммы фактических частот, так как нормальный закон не ограничен рамками фактических минимума и максимума.

Число групп после объединения малочисленных составило 7. Критическое значение c2  по табл. 4 приложения при 7-3 = 4 степеням свободы и значимости 0,05 составляет 9,49. Значит, вероятность расхождения распределения с нормальным меньше 0,05, и вероятность соответствия его нормальному закону больше 0,95. Табличное значение c2  для значимости 0,1 равно 7,78, что также больше фактического.

Таблица 7.5

Проверка соответствия распределения хозяйств по урожайности

зерновых культур нормальному закону

 

Группы

хозяйств

 

fj

 

tj

 

 tj + i

 

Рj

 

f̂j

 

(fj - f̂j)2/ f̂̂2j

1

6

-2,41

-1,81

0,0235

3

0,071

2

9

-1,81

-1,22

0,0798

11

 

 

3

20 -

-1,22

-0,63

0,1531

22

0,182

4

41

-0,63

-0,04

0,2197

32

2,531

5

26

-0,04

0,56

0,2282

33

1,485

6

21

0,56

1,15

0,1627

23

0,174

7

14

1,15

1,74

0,0842

12

0,333

8

5

1,74

2,33

0,0310

4

0,200

9

1

2,33

2,93

0,0082

1

 

 

S

143

´

´

0,9904

141

4,976

 

Ясно, что гипотеза о соответствии распределения хозяйств по урожайности нормальному закону не может быть отклонена.

Какое практическое значение может иметь произведенная проверка гипотезы? Во-первых, соответствие нормальному закону позволяет прогнозировать, какое число хозяйств (или доля совокупности) попадает в тот или иной интервал значений признака. Во-вторых, нормальное распределение возникает при действии на вариацию изучаемого показателя множества независимых факторов. Из этого следует, что нельзя существенно снизить вариацию урожайности, воздействуя только на один-два управляемых фактора, скажем удобрения или энергозатраты.

С помощью критерия c2  можно проверять не только гипотезу о согласии эмпирического распределения с нормальным законом, но и с любым другим известным законом распределения - равномерным распределением, распределением Пуассона и т. д. Например, суд рассматривает жалобу посетителей казино на то, что, по их мнению, игральная кость, которой там пользуются, фальшива, некоторые числа очков, якобы, выпадают чаще, чем другие, и этим пользуются крупье, обирающие игроков.

Суд назначает экспертизу игральной кости: эксперт делает 600 бросков и записывает число выпавших единиц, двоек, троек и т. д.

Полученное эмпирическое распределение сравнивается с теоретическим, т. е. равномерным: в правильной кости вероятность выпадения каждого числа очков должна быть равна 1/6, при 600 бросках это даст по 100 выпадений каждого числа очков. С помощью критерия c2  проверяется нулевая гипотеза о том, что различия эмпирического и теоретического распределений случайны, т. е. не являются систематическим результатом фальсификации формы кости или положения центра тяжести в ней; H0 : fфакт = fтеор.  Результаты испытания и расчет у приводятся в табл. 7.6.

Таблица 7.6

Результаты испытания игральной кости

 

Число очков

 

1

2

3.

4

5

6

Итого

      Количество

      выпадений,

fфакт

101

86

107

94

97

117

 

600

 

 fтеор

 

100

    100 

    100

    100

    100

     100

 

600

 

fфакт -  fтеор

 

1

-14

7

-6

-3

17

 

0

 

(fфакт- fтеор)2= fтеор

 

0,01

1,96

0.49

0,36

0.09

2,89

 

5,80

 

Табличное значение c2  при уровне значимости 0,05 (это вероятность ошибочного отклонения нулевой гипотезы при условии, что она верна) и при 6-2=4 степенях свободы (фиксировано 2 параметра: сумма числа бросков 600 и вероятность каждого числа очков - 1/6) составляет 9,49. Вычисленное значение c2  =5,8, что значительно ниже табличного. Следовательно, нулевая гипотеза не отклоняется: распределение бросков по числу выпавших очков нельзя считать неравномерным. Обвинение игроков против служащих казино не подтверждено достаточно надежно, но не доказано и то, что кость правильная. Можно назначить более дорогую экспертизу - сделать 100 000 бросков кости, но можно и согласиться, что вероятность ошибочного признания правильности кости мала - всего 5\% - и отклонить обвинение.

Выбор закона распределения проводится на основе теоретического анализа. Кроме того, целесообразно руководствоваться следующей рекомендацией: выражение, определяющее функцию плотности распределения, должно зависеть от возможно меньшего числа параметров. Например, экспоненциальное распределение зависит от одного параметра - средней величины; нормальное и логнормальное распределение - от двух параметров.

 

Страница: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 |