Имя материала: Общая теория статистики

Автор: Елисеева Ирина Ильинична

8.10. гиперболическая корреляция

 

Уравнение регрессии в форме гиперболы имеет следующий вид:

Если величина Ъ положительна, то при увеличении значений факторного признака х значения результативного признака уменьшаются, причем это уменьшение все время замедляется, и при х -> оо средняя величина признака у будет равна а. Если же параметр Ь отрицателен, то значения результативного признака с ростом фактора возрастают, причем- их рост замедляется, и в пределе при х ® ¥ у̃ = а. Таким образом, гиперболические зависимости характерны для связей, в которых результативный признак не может варьировать неограниченно, его вариация имеет односторонний предел. Например, при освоении нового оборудования его производительность возрастет, но рост замедлится по мере приближения к конструктивно-технологическому пределу производственной мощности агрегата. Совершенствуя двигатель, можно увеличивать его КПД, но тоже не выше предела, допускаемого данным видом преобразования энергии. Таков же характер связи между уровнем душевого дохода х в семье и долей семей, имеющих телевизоры, у; он приближен к пределу (100\%) в наиболее обеспеченной группе семей. Нормальные уравнения метода наименьших квадратов для гиперболы таковы:

Легко видеть, что эти уравнения, по существу, те же, что и для линейной связи. Линеаризация гиперболического уравнения достигается заменой 1/х на новую переменную, которую можно обозначить z. Тогда уравнение (8.27) примет вид  ỹ = а + bz. Это и следует cделать, вычисляя гиперболу на компьютере, если программа для него не предусматривает автоматического вычисления гиперболических регрессий.

В качестве примера расчета уравнения гиперболической связи рассмотрим влияние среднесуточного прироста живой массы крупного рогатого скота на откорме на себестоимость прироста живой массы в совокупности предприятий области, занимавшихся откормом скота (табл. 8.6).

где х в сотнях граммов

Таблиц а 8.6

Гиперболическая связь себестоимости прироста со

скоростью прироста массы скота

Группы предприятий по среднесуточному приросту массы граммов на 1 голову хi

Число предприятий fj

Средняя себестоимость прироста руб./ц

y̅j

Середина интервалов x'j

сотнях граммов на голову

 

 

 

 

 

 

 

 

 

 

334-425

22

496

3,8

5,79

1,52

10912

2872

513

425-516

37

425

4,7

7,87

1,67

15725

3346

419

516-607

28

360

5,6

. 5,00

0,89

10080

1800

356

607-698

27

310

6,5

4,15

0,64

8370

1288

310

698-789

9

283

7,4

1,22

0,16

2547

344

275

Итого

123

387

-

24,03

4,88

47634

9650

-

 

 

Точечный прогноз по уравнению регрессии при среднесуточном приросте массы животных, равном 900 г, уже достигнутом передовыми хозяйствами, приводит к ожидаемой средней себес-

Следовательно, 67\% вариации себестоимости прироста массы скота объяснились вариацией скорости роста массы животных и связанных с ней других факторов, например, чем быстрее растет масса, тем меньше расход кормов на единицу прироста массы.

 

Страница: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 |