Имя материала: Общая теория статистики

Автор: Елисеева Ирина Ильинична

9.5. методы выявления типа тенденции динамики

 

Прежде чем применить методы математического анализа для вычисления параметров уравнения тренда, необходимо выявить тип тенденции, а эта задача не является чисто математической. Наличие колебаний уровней крайне усложняет выявление типа тенденции и требует всестороннего подхода к этой проблеме, прежде всего качественного изучения характера развития объекта. При этом нужно дать ответ на такие вопросы:

1. Были ли условия развития объекта достаточно однородными в изучаемый период?

2. Каков характер действия основных факторов развития?

3. Не произошло ли качественное, существенное изменение условий развития объекта внутри изучаемого периода времени?

Если, например, часть периода предприятие работало по старой технологии, а затем произошло техническое перевооружение - введены новые цехи, поточные линий, то единой тенденции показателей за весь период не будет, скорее всего нужна «периодизация» ряда, т.е. его дробление на отдельные подпериоды: до реконструкции, во время таковой (если она длительна) и после освоения новой технологии.

Чем крупнее изучаемая система, чем больше факторов влияют на динамику изучаемого признака, тем реже возможны резкие, скачкообразные изменения в ряду динамики (не колебания, а именно изменения в тенденции). Большие и сложные системы обладают значительной инерцией, и для скачкообразного, резкого изменения тенденции такой системы требуются большие затраты ресурсов, которые общество выделить не в состоянии. Поэтому такое столь коренное изменение в экономике, как переход от командно-административного планового хозяйства к рыночной регулируемой экономике, в масштабе нашей страны неизбежно займет достаточно большое время, за которое сформируются новые тенденции народнохозяйственных показателей. Чтобы разглядеть эти новые тенденции, понадобится время.

Напротив, в масштабе отдельных предприятий вполне возможны резкие изменения, переходы от одной тенденции к другой.

Рассмотрим некоторые основные типы уравнений тренда, выражающие те или иные качественные свойства развития.

А. Линейная форма тренда:

у̂ = а + bt,                                                                                                         (9.20)

где у̂ — уровни, освобожденные от колебаний, выравненные по прямой;

а - начальный уровень тренда в момент или период, принятый за начало отсчета времени t;

b - среднегодовой абсолютный прирост (среднее изменение за единицу времени); константа тренда.

 

Линейный тренд хорошо отражает тенденцию изменений при действии множества разнообразных факторов, изменяющихся различным образом по разным закономерностям. Равнодействующая этих факторов при взаимопогашении особенностей отдельных факторов (ускорение, замедление, нелинейность) часто выражается в • примерно постоянной абсолютной скорости изменения, т.е. в прямолинейном тренде. Таковы, например, тенденции динамики урожайности для масштаба области, республики, крупного региона, страны в целом.

Б. Параболическая форма тренда:

̂у = а + bt + сt2,                                                                                                               (9.21)

где с - квадратический параметр, равный половине ускорения; константа параболического тренда. Остальные обозначения прежние.

 

Параболическая форма тренда выражает ускоренное или замедленное изменение уровней ряда с постоянным ускорением. Такой характер развития можно ожидать при наличии важных факторов прогрессивного развития (прогрессирующее поступление нового высокопроизводительного оборудования, увеличение среднесуточного прироста живого веса поросят с возрастом и т.п.). Ускоренное возрастание может происходить в период после снятия каких-то сдерживающих развитие преград - ограничений в распределении дохода, в уровне оплаты труда, при повышении цены реализации на дефицитную продукцию.

Параболическая форма тренда с отрицательным ускорением (с < 0) приводит со временем не только к приостановке роста уровня, но и к его снижению со все большей скоростью. Такой характер развития может быть свойствен производству устаревшей продукции, ликвидируемой отрасли сельского хозяйства на предприятии (ферме) и т.п.

Парабола 2-го порядка (квадратическая) имеет либо максимум (если с < 0 и b > 0), либо минимум (b < 0, с > 0). Для нахождения экстремума производную параболы по времени t следует приравнять нулю и решить полученное уравнение относительно t. Например, если население города (тыс. чел.) возрастает по параболе

у =1800 + 80t - 2t2,

то производная по времени df/dt будет иметь вид: 80 - 4t = 0, откуда t = 20. Максимум населения будет достигнут через 20 лет после начала отсчета времени, и это максимальное население составит:

ŷmax = 1800 + 80· 20 - 2·202 = 2600 тыс. человек.

В. Экспоненциальная форма тренда:

где k — темп изменения в разах; константа тренда.

 

Если k > 1, экспоненциальный тренд выражает тенденцию ускоренного и все более ускоряющегося возрастания уровней. Такой характер свойствен, например, размножению организмов при отсутствии ограничения со стороны среды: кормов, пространства, хищников, болезней. При росте по экспоненте абсолютный прирост пропорционален достигнутому уровню. Так росло население Земли в эпоху «демографического взрыва» в XX столетии; сейчас этот период заканчивается и темп роста населения стал уменьшаться. Если бы он остался на уровне 1960 - 1970 гг. т. е. около 2\% прироста в год от 1985 г., когда население составило 5 млрд чел., то к 2500 г. население Земли достигло бы уровня: 5 млрд·1,02515 = 134 трлн 286 млрд человек; на 1 человека приходилось бы примерно 1 м2 всей площади суши. Ясно, что рост любого объекта по экспоненциальному закону может продолжаться только небольшой исторический период времени, ибо ресурсы для любого процесса развития всегда встретят ограничения.

При k < 1 экспоненциальный тренд означает тенденцию постоянно все более замедляющегося снижения уровней динамического ряда. Такая тенденция может быть присуща динамике трудоемкости продукции, удельных затрат топлива, металла на единицу полезного эффекта (на 1 кВт ч, на 1 м2 жилой площади и т.д.) при технологическом прогрессе; экстремальных точек экспонента не имеет.

Г. Логарифмическая форма тренда:

у̂ = а + blogt.                                                                                                   (9.23)

Логарифмический тренд пригоден для отображения тенденции замедляющегося роста уровней при отсутствии предельного возможного значения. Замедление роста становится все меньше и меньше, и при достаточно большом t логарифмическая кривая становится малоотличимой от прямой линии. Логарифмический тренд пригоден для отображения роста спортивных достижений (чем они выше, тем труднее их улучшать), роста производительности агрегата по мере его освоения и совершенствования, повышения продуктивности скота или вообще эффективности системы при ее совершенствовании без качественных, коренных преобразований. Экстремума логарифмическая кривая не имеет.

Д. Тренд в форме степенной кривой:

ŷ = ath,                                                                                                                             (9.24)

где b - константа тренда.

 

При b = 1 имеем линейный тренд, b = 2 - параболический и т.п. Степенная форма - гибкая, пригодная для отображения изменений с разной мерой пропорциональности изменений во времени. Жестким условием является обязательное прохождение через начало координат: при t = 0, у = 0. Можно усложнить форму тренда: у̃ = а + th  или у̃ = а + cth, но эти уравнения нельзя логарифмировать, трудно вычислять параметры, и они крайне редко применяются.

Е. Гиперболическая форма тренда:

Если b > 0, гиперболический тренд выражает тенденцию замедляющегося снижения уровня, стремящегося к пределу а. Если b < 0, тренд выражает тенденцию замедляющегося роста уровней, стремящихся в пределе к а. Следовательно, гиперболическая форма тренда подходит для отображения тенденции, процессов, ограниченных предельным значением уровня (предельным коэффициентом полезного действия двигателя, пределом 100\%-ной грамотности населения и т.п.).

Ж. Логистическая форма тренда:

Логистическая кривая имеет форму латинской буквы s положенной на бок, отчего еще называется эсобризной кривой. Она имеет два перегиба: от ускоряющегося роста к равномерному (вогнутость) и от равномерного роста посреди периода к замедляющемуся (выпуклость). Она подходит для отображения развития в течение длительного периода, проходящего все фазы, например процесса насыщения потребителей каким-то новым товаром, скажем, телевизорами: сначала медленный, но все ускоряющийся рост доли семей, имеющих телевизор, затем рост равномерный (примерно от 30 -40\% семей до 70 - 80\%). Затем рост доли семей, имеющих телевизор, замедляется по мере приближения доли к 100\%. Если ymin = 0, ymax = 100\% или 1, уравнение упрощается до формы

После теоретического исследования особенностей разных форм тренда необходимо обратиться к фактическому ряду динамики, тем более что далеко не всегда можно надежно установить, какой должна быть форма тренда из чисто теоретических соображений. По фактическому динамическому ряду тип тренда устанавливают на основе графического изображения, путем осреднения показателей динамики, на основе статистической проверки гипотезы о постоянстве параметра тренда.

На рис. 9.1 достаточно хорошо видно, что тренд урожайности выражен прямой линией. Исходный ряд уровней короткий, поэтому на данном примере нельзя использовать другие приемы. Применим их к анализу динамики индекса цен на нетопливные товары развивающихся стран за 1979 - 1995 гг. Скользящая пятилетняя средняя, сглаживая колебания отдельных уровней, довольно отчетливо показывает тенденцию равномерного снижения уровней. Если разбить ряд на три части, то средние уровни также подтверждают этот вывод: за 1979 - 1983 гг. средний уровень равен 112,3; за 1984 - 1989 гг. - 103,0; за 1990 -1995 гг. - 97,0. Существенного различия в величине снижения среднегодовых уровней нет. Оба приема - скользящая средняя и средние уровни по частям ряда - не свободны от субъективных факторов. Можно скользящую среднюю вычислять не за 5 лет, а за 6 или 7; можно иначе разбить ряд на три части или на другое число частей.

Более обоснованным приемом выявления тренда является проверка статистической гипотезы о постоянстве того или иного показателя динамики. Рассмотрим этот прием по данным табл. 9.4.

 

Таблица 9.4

Проверка гипотезы о линейном тренде индекса цен

(1990 г. = 100\%)

 

      

 

В первую очередь проверяется гипотеза о наиболее простой - линейной форме уравнения тренда, т. е. о несущественности различий цепных абсолютных изменений. Имеем 12 абсолютных изменений скользящей средней, которая хотя и сгладила сильные колебания уровней ряда, но как видим, ее абсолютные изменения далеко не одинаковы. Разбиваем эти 12 цепных приростов на два подпериода: по 6 приростов в каждом, и для каждого подпериода вычисляем среднюю Δ̅k среднее квадрагическое отклонение (СКО) как оценку генерального СКО с учетом потери одной степени свободы вариации, s

 

и среднюю ошибку среднего изменения тΔk по правилам, рассмотренным в главе 7:

 

Для проверки гипотезы о несущественности различий между средними абсолютными изменениями по подпериодам Δ̅1, Δ̅2. М. С. Каяйкина предложила проверять существенность их различий попарно по t-критерию Стьюдента. Затем методика была дополнена и усовершенствована А. И. Манеллей, предложившим проверять существенность всех различий сразу по критерию Фишера.

Средняя случайная ошибка разностей двух выборочных средних оценок, как показано в гл. 7, есть корень квадратный из суммы квадратов ошибок каждой из средних, т. е.

 

Критерий Стьюдента для существенности различия двух среднегодовых приростов (изменений) составит:

Критическое значение критерия при уровне значимости 0,05 и при (6-1) + (6-1) = 10 степенях свободы равно 2,23 (см. Приложение 2). Фактическое значение много меньше. Следовательно вероятность того, что различие среднегодовых приростов в разные под-периоды случайно, превышает 0,05 и гипотеза о равенстве приростов не отклоняется. А значит, тенденцию динамики на реем протяжении ряда можно считать линейной.

Если же гипотеза о линейности отклоняется, по скользящим средним и их цепным приростам вычисляют ускорения приростов и аналогичным методом проверяют существенность различия ускорения в подпериодах. Если несущественно различиеускорений, принимается гипотеза о том, что тренд - парабола II порядка. Если и гипотеза о постоянстве ускорений отклоняется, то по скользящей средней вычисляют цепные темпы роста и проверяют гипотезу об их постоянстве по подпериодам. Подтверждение (неотклонение) этой гипотезы означает принятие гипотезы о том, что тренд экспоненциальный.

Проверка гипотез о других типах тенденций динамики, рассмотренных в п. 9.4, сложнее и здесь излагаться не будет. Итак, в нашем примере принято решение считать тренд линейным, и следует приступить к вычислению его параметров.

 

Страница: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 |