Имя материала: Основы биогеохимии

Автор: В.В.ДОБРОВОЛЬСКИЙ

Относительное содержание химических элементов в земной коре

 

Химики и петрографы начиная со второй половины XIX в. изучали химический состав горных пород методами весового и объемного химического анализа. Суммируя результаты многочисленных анализов горных пород, Ф. Кларк показал, что в земной коре преобладают восемь химических элементов: кислород, кремний, алюминий, железо, магний, кальций, калий и натрий. Этот основной вывод неоднократно подтвержден результатами последующих исследований. Методами химического анализа, которыми пользовались в XIX в., определение низких концентраций элементов было невозможно. Требовались принципиально иные подходы.

Мощный импульс изучению химических элементов с очень низкой концентрацией в веществе земной коры дало применение более чувствительного метода — спектроскопического анализа. Новые факты позволили В. И. Вернадскому сформулировать принцип «всюдности» всех химических элементов. В докладе на XII съезде российских естествоиспытателей и врачей в декабре 1909 г. он заявил: «В каждой капле и пылинке вещества на земной поверхности, по мере увеличения тонкости наших исследований, мы открываем все новые и новые элементы... В песчинке или в капле, как в микрокосмосе, отражается общий состав космоса».

Идея «всюдности» химических элементов долгое время вызывала настороженность даже со стороны крупных ученых. Это было связано с тем, что элементы, содержащиеся в количестве ниже уровня чувствительности метода, при анализе не обнаруживались. Создавалась иллюзия их полного отсутствия, что отразилось на терминологии. В геохимии возникли термины редкие элементы (die seltene Elementen — нем.; rare elements — англ.), частота (die Haufigkeit — нем.) обнаружения. В действительности имеет место не реальная редкость или малая частота встречаемости элемента при анализах, а его низкая концентрация в изучаемых пробах, которая не может быть определена недостаточно чувствительными методами анализа.

Низкая чувствительность метода часто не позволяла определять количество элемента, а лишь констатировать присутствие его «следов». С тех пор в геохимической литературе широко используется термин? применявшийся В.М.Гольдшмидтом и его коллегами в 1930-х гг.: элементы-следы (die Spurelemente — нем.; trace elements — англ.; des elements traces — фр.).

В итоге усилий ученых разных стран в 20-х гг. XX в. сложилось общее представление о составе земной коры. Средние значения относительного содержания химических элементов в земной коре и других глобальных и космических системах известный геохимик А. Е. Ферсман предложил называть кларками в честь ученого, который наметил путь к количественной оценке распространения химических элементов.

Кларк — весьма важная величина в геохимии. Анализ значений кларков позволяет понять многие закономерности распределения химических элементов на Земле, в Солнечной системе и доступной нашим наблюдениям части Вселенной. Кларки химических элементов земной коры различаются более чем на десять математических порядков. Столь существенное количественное различие должно отразиться на качественно неодинаковой роли двух групп элементов в земной коре. Наиболее ярко это проявляется в том, что элементы первой группы, содержащиеся в относительно большом количестве, образуют самостоятельные химические соединения, а элементы второй группы с малыми кларками преимущественно распылены, рассеяны среди химических соединений других элементов. Элементы первой группы называют главными, элементы второй — рассеянными. Их синонимами в английском языке являются minor elements, rare elements, наиболее употребляемый синоним trace elements. Условной границей между группами главных и рассеянных элементов в земной коре может служить величина 0,1 \%, хотя кларки большей части рассеянных элементов значительно меньше и измеряются тысячными и меньшими долями процента. Понятие о состоянии рассеяния химических элементов, так же как и о их «всюдности», было введено в науку В. И. Вернадским.

Полный химический состав верхнего, так называемого гранитного, слоя континентального блока земной коры приведен в табл. 1.1.

Таблица 1.1

Кларки химических элементов гранитного слоя коры континентов (в порядке убывания значений) (по А. А Беусу, 1976)

 

Химический

элемент

Атомный номер

Среднее содержание, 1×10-4 \%

Химический элемент

Атомный номер

Среднее содержание, 1×10-4 \%

 

О

8

481 000

Mg

12

12000

 

Si

14

399 000

Ti

22

3300

 

А1

13

80 000

H

1

1000

 

Fe

26

36000

P

15

800

 

К

19

27000

F

9

700

 

Са

20

25000

Мn

25

700

 

Na

11

22000

Ва

56

680

 

S

16

400

Ег

68

3,6

С

6

300

Yb

70

3,6

Sr

38

230

Hf

72

3,5

Rb

37

180

Sn

50

2,7

Cl

17

170

и

92

2,6

Zr

40

170

Be

4

2,5

Се

58

83

Br

35

2,2

V

23

76

Та

73

2,1

Zn

30

51

As

33

1,9

La

57

46

W

74

1,9

Yr

39

38

Ho

67

1,8

Cl

24

34

Tl

81

1,8

Nd

60

33

Eu

63

1,4

Li

3

30

Tb

65

1,4

N

7

26

Ge

32

1,3

Ni

28

26

Mo

42

1,3

Cu

29

22

Lu

71

1,1

Nb

41

20

I

53

0,5

Ga

31

18

Tu

69

0,3

Pb

82

16

In

49

0,25

Th

90

16

Sb

51

0,20

Sc

21

11

Cd

48

0,16

В

5

10

Se

34

0,14

Sm

62

9

Ag

47

0,088

 

 

                                                                                                                Окончание табл. 1.1

 

Химический

элемент

Атомный номер

Среднее содержание, 1×10-4 \%

Химический элемент

Атомный номер

Среднее содержание, 1×10-4 \%

Gd

64

9

Hg

80

0,033

Pr

59

7,9

Bi

83

0,010

Co

27

7,3

Au

79

0,0012

Dy

66

6,5

Те

52

0,0010

Cs

55

3,8

Re

75

0,0007

 

Страница: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 |