Имя материала: Основы биогеохимии

Автор: В.В.ДОБРОВОЛЬСКИЙ

5.7. педосфера — регулятор биогеохимических циклов тяжелых металлов

 

Функционирование многокомпонентной системы почвы основано на непрерывном обмене вещества и энергии между компонентами. Процессы массообмена химических элементов поддерживаются разнообразными межкомпонентными равновесиями, среди которых особая роль принадлежит равновесиям между твердой и жидкой фазами почвы. Это связано с тем, что именно из почвенных растворов поступают многие химические элементы, необходимые высшим растениям для синтеза ежегодной продукции. Вместе с тем почвенные растворы служат питательной средой для микроорганизмов, разлагающих мертвое органическое вещество. Процессы, протекающие между твердой фазой почвы и почвенными растворами, являются важной частью механизма биогеохимических циклов массообмена химических элементов.

Концентрация элементов в почвенном растворе поддерживается на определенном уровне благодаря равновесию между элементами, находящимися в жидкой и твердой фазах почвы. Равновесное распределение элементов между этими фазами обусловлено процессами осаждения — растворения и адсорбции — десорбции. При поступлении в почву соединения, способного в той или иной мере растворяться в воде, оно растворяется в результате воздействия Н+, ОН-, СО32-, НСО3, Н3РО4, водорастворимых гумусовых кислот и др. В то же время взаимодействие раствора и твердой фазы почвы сопровождается уменьшением концентрации рассеянных элементов в растворе. Устойчивая концентрация металлов в многократных последовательных водных экстракциях свидетельствует о том, что металлы, содержащиеся в твердой фазе и растворе, связаны равновесием.

Согласно теории химического равновесия, состав раствора регулируется процессом, происходящим при наименьшей концентрации элемента в растворе. По мнению Л. А. Воробьевой и соавторов (1980), определяющее значение имеет процесс осаждения — растворения самого малорастворимого соединения. Авторы предполагают, что, во-первых, природные растворы являются насыщенными по отношению к наиболее малорастворимым соединениям металлов, которые находятся в равновесии с твердой фазой почвы. Во-вторых, в соответствии с принципом Ле Шателье уровень концентрации в растворе должен ограничиваться тем соединением, которое в данных условиях выпадает в осадок при наименьшей концентрации.

Наименее растворимые в воде соединения с тяжелыми металлами образуют фосфат-ионы. Следовательно, присутствие фосфатов должно определять концентрацию тяжелых металлов в почвенных растворах или водных экстрактах. Содержание фосфатов металлов в твердой фазе почвы можно рассматривать как резерв для поддержания их концентрации в почвенном растворе. В качестве примера в табл. 5.9 приведены данные о соотношении общего содержания свинца, фосфатов свинца и его концентрации в водных экстрактах в разных типах почв.

Таблица 5.9

Содержание свинца в твердой фазе почв и водных экстрактах

(составлено автором по данным Е.А.Лобановой, 1983)

 

Горизонт

Общее содержание свинца, мг/кг

Содержание фосфата свинца, мг/кг

Концентрация свинца в водных экстрактах, мкг/л

Дерново-подзолистая почва

А1

16,5

1,0 (6,1)

2,5

А2

9,0

0,6 (6,7)

1,7

В1

13,0

0,7 (5,4)

1,2

Чернозем типичный мощный

А1

25,0

1,0 (4)

1,5

В1

22,5

0,7 (3)

1,0

С

22,5

0,7 (3)

1,0

Бурая горно-лесная почва

А1

42,0

4,0 (9,5)

2,5

В1

27,0

3,0 (11,1)

1,5

В2

33,0

3,0 (9,1)

1,0

 

Примечание. В скобках указан процент от общего содержания

 

Содержание фосфат-ионов в почвенном растворе ничтожное и недостаточное для выведения всего количества растворенных металлов. В то же время при добавлении в водные экстракты твердого вещества почвы концентрация тяжелых металлов быстро снижается благодаря адсорбции. В данном случае под адсорбцией подразумевают разные виды удаления тяжелых металлов путем связывания их с твердым веществом без образования индивидуализированных химических соединений.

Экспериментальные данные по адсорбции тяжелых металлов и близких им элементов из растворов твердой фазой удовлетворительно описываются уравнением изотермы адсорбции Фрейндлиха:

х/т = КС1/m,

где          х/т — количество адсорбируемого металла;

С — равновесная концентрация металла в растворе;

K и 1/n — константы.

Полученные разными авторами результаты показывают, что изотермы металлов делятся на две части: первая расположена под большим углом к оси абсцисс, вторая — более пологая. Такое разделение объясняется тем, что при низких концентрациях в растворе тяжелые металлы в первую очередь занимают на поверхности твердого тела места с высокой энергией связи (специфическая адсорбция металлов почвой) и лишь затем — с более низкой энергией (неспецифическая адсорбция). Специфически адсорбированные катионы связаны с твердой фазой почвы преимущественно ковалентными или координационными связями, неспецифически адсорбированные — ионообменными.

Специфическая адсорбция обусловлена гумусом почв и гидроксидами железа, образующими тончайшие пленки на глинистых частицах. Поэтому после разрушения гумуса пероксидом водорода и удаления пленок гидроксидов железа методом Мира — Джексона (1960) сорбционная способность почвы уменьшается. Тяжелые металлы специфически адсорбируются селективно: Pb > Zn > Cd. При этом свинец преимущественно связан с гидроксидами железа, а цинк — с гумусом. В катионообменной форме находится примерно '/з цинка и большая часть кадмия (табл. 5.10).

Таблица 5.10

Соотношение форм адсорбции тяжелых металлов в черноземе

и бурой лесной почве, \% от общего количества адсорбированного

металла (составлено автором поданным В.С.Горбатова, 1983)

 

 

Металл

Форма адсорбции, \%

катионо-обменная

связанная с гумусом

связанная с гидроксидами Fe'+

Чернозем

Zn

15,6

19,4

50,0

Pb

0,9

40,0

40,0

Cd

76,2

9,5

16,2

Бурая лесная почва

Zn

35,5

28,0

26,7

Pb

3,7

63,9

26,2

Cd

71,1

11,1

26,7

 

Комплексы металлов с гумусовым веществом и гидроксидами трехвалентного железа весьма устойчивы. Так же устойчивы хемосорбционные образования, имеющие межмолекулярные связи. Наиболее легко переходят в раствор металлы, находящиеся в катионообменной форме. Следовательно, чем большая часть металла адсорбирована органическим веществом, тем более прочно он закреплен в почве. Чем большая часть находится в катионообменной форме, тем легче мобилизуется металл. Из металлов, фигурирующих в табл. 5.10, наиболее подвижен кадмий, наименее — свинец. В органическом веществе металлы настолько прочно связаны, что недоступны растениям. Поэтому растения, произрастающие на осушенных заболоченных почвах, богатых слаборазложенным органическим веществом с высоким содержанием меди, цинка и марганца, часто испытывают физиологический дефицит этих металлов. Катионообменная адсорбция в основном связана с высокодисперсными глинистыми минералами. Наряду с этой формой часть металлов закрепляется в глинистых минералах более прочно, очевидно, проникая в межпакетные пространства кристаллической структуры этих минералов.

Металлы, адсорбированные гумусом, наиболее активно связываются с карбоксильными (СООН) и фенольными (ОН) группами, замещая водород. При этом образуются хелаты, в которых металл входит в анионную часть молекулы органического вещества. Согласно Л.Н.Александровой (1967), металл соединен координационными связями и не проявляет себя как катион. Схема образования комплекса следующая:

 

Комплекс может также присоединять металл в обмен на Н+ во внешних функциональных группах:

 

 

Следовательно, металл может входить как в анионную, так и в катионную часть молекулы гумусовой кислоты. Как отмечалось в разд. 5.2, молекулы гумусовых соединений различаются количеством функциональных групп и степенью сконденсированности «ядра». Поэтому на адсорбцию влияют не только свойства металлов, но и особенности строения гумусовых соединений.

При взаимодействии металлов с гидроксидами Fe3+ возникает связь между ионом металла и двумя группами (ОН)". На схеме представлено возможное взаимодействие металла с рентгеноаморф-ным гидроксидом Fe3+, состав которого отвечает гидрогетиту:

                

Адсорбция рассеянных элементов и равновесие между твердой и жидкой фазами почвы имеют важное значение для поступления этих элементов в растения. Установлено, что существует два типа поступления элементов в растения (Рубин Б. А., 1974). Первый из них — активный процесс поглощения элемента клеткой против градиента его концентрации, второй — пассивный перенос в направлении градиента. Активное поглощение происходит с затратой энергии и, как правило, селективно, обусловливая биогеохимическую дифференциацию элементов, рассмотренную в разд. 2.3. Пассивное поглощение осуществляется попутно с процессом транспирации.

Тип поступления элементов в растения зависит от концентрации их в почвенном растворе. При низких концентрациях, свойственных рассеянным элементам в условиях геохимического фона, основное значение имеет активное селективное поглощение элементов растениями. В случае аномально высокого обогащения раствора элементом, обычно содержащимся в ничтожном количестве, происходит его пассивное поступление в растения.

Уровни концентрации рассеянных элементов в почвенных растворах имеют исключительно важное значение для нормальной жизнедеятельности растений. В процессе эволюции у растений выработались некоторые механизмы блокирования излишнего количества рассеянных элементов, в первую очередь тяжелых металлов. В.Б.Ильин и М.Д.Степанова (1980) предположили, что рассеянные металлы в той или иной мере могут задерживаться на периферии корня в зоне пояска Каспари. Возможно, имеются физиологические механизмы, предохраняющие репродуктивные органы. Однако защитное действие растений весьма ограничено, а для некоторых элементов, например цинка, — отсутствует (Бан-сал Н. А. и др., 1982). Необходимая для растений низкая концентрация тяжелых металлов главным образом обеспечивается равновесиями между твердой и жидкой фазами почвы.

Концентрация рассеянных элементов в почвенных растворах является важным фактором нормальной жизнедеятельности не только высших растений, но и почвенной микробиоты. Имеющиеся данные свидетельствуют, что почвенные микроорганизмы адаптированы к неодинаковым уровням концентрации цинка, меди, свинца, кадмия, молибдена, кобальта и других рассеянных элементов. На этом основании В. В. Ковальский (1974) предположил, что в почвах существуют разные экологические типы одного и того же вида микроорганизмов, приспособленные к определенным уровням содержания рассеянных элементов.

С.В.Летунова (1978) изучила микроорганизмы в почвах Сум-сарского свинцово-цинкового месторождения и установила, что наиболее устойчивы к избытку тяжелых металлов грибы, наименее — бактерии. В то же время наибольшее содержание цинка обнаружено в сухом веществе спорообразующих бактерий (5154,1 мг/кг сухого вещества бактерий), актиномицетов (до 483,7 мг/кг), грибов (251,0 мг/кг) и неспороносных бактерий (до 118,0 мг/кг). Максимальное содержание свинца также относится к спорообразующим бактериям (1466,7 мг/кг), затем следуют неспорообразу-ющие бактерии (до 246 мг/кг), актиномицеты (101,7 мг/кг) и грибы (96,4 мг/кг).

Способность к аккумуляции металлов, по-видимому, является характерной биогеохимической особенностью почвенных бактерий. Возможно, они вырабатывают ферменты для трансформации водорастворимых соединений металлов в неактивные формы внутри клеток. В результате деятельности бактерий образованы крупные месторождения руд железа, марганца, меди, ванадия, урана и других металлов. Способность бактерий аккумулировать металлы использована при разработке технологий микробиологического извлечения металлов из бедных руд и микробиологической очистки сточных вод.

Несмотря на способность к аккумуляции металлов, микроорганизмы, населяющие почвы с нормальной, невысокой концентрацией металлов, чувствительно реагируют на возрастание их концентрации. Это проявляется в подавлении биогеохимической деятельности некоторых групп организмов, в частности фиксаторов атмосферного азота.

Опыты С. В.Летуновой (1978) на почвенных экстрактах и непосредственное микробиологическое изучение микроорганизмов почв показали, что азотфиксирующие бактерии Azotobacter chroococum из почв разных районов приспособлены к разным концентрациям меди. Azotobacter из почв Подмосковья существует в условиях низкой концентрации меди и молибдена, а из почв Узбекистана — при более высокой. Внесение дополнительных количеств меди и молибдена к экстракту из почвы Подмосковья подавляло рост и фиксацию им азота штамма Azotobacter, в то время как для Azotobacter из почвы Узбекистана эти концентрации не вызывали отрицательной реакции.

М.М.Умаров с коллегами (1980) установили, что наиболее сильно подавляют азотфиксирующую активность почвы избыточные количества кадмия, в меньшей степени — меди, наименее заметно влияние свинца. Возможно, что степень токсичного воздействия металлов связана с прочностью их адсорбции твердой фазой почвы, которая соответствует ряду Рb > Сu > Cd. Эффект подавления азотфиксирующей деятельности почв избыточными дозами металлов, к которым микроорганизмы не адаптированы, можно использовать для оценки интенсивности техногенного загрязнения почв.

По причине значительной сорбционной емкости и действию рассмотренных равновесий почва обладает замечательной способностью связывать массы тяжелых металлов и поддерживать их концентрацию в почвенном растворе на низком уровне, обеспечивающем селективное поглощение необходимого растениям количества металлов. В то же время при недостатке металла благодаря имеющемуся равновесию между твердой и жидкой фазами почва способна выделять этот металл в раствор.

Образование комплексных соединений металлов с органическим веществом почвы способствует выведению излишних масс металлов из миграционных циклов на длительное время. Прочность фиксации разных металлов в органическом веществе почв , неодинакова. Наиболее прочно закрепляется ртуть, прочно связывается свинец, менее прочно — медь, еще менее — цинк и кадмий. Поглощая и связывая избыточные массы рассеянных элементов, поступающие на поверхность суши в активной растворимой форме, педосфера выполняет функцию регулятора масс рассеянных элементов, поступающих в миграционные циклы. В процессах регулирования важную роль играют почвенное органическое вещество и гидроксиды железа.

Изложенные в этой главе данные позволяют рассматривать почву не только как основной источник производства продуктов питания для населения земного шара, но и как важнейшее звено глобальной системы всей биосферы. Ответственное значение почвы связано с ее ролью регулятора многих биогеохимических циклов. В почве систематически консервируется значительная масса синтезированного высшими растениями органического вещества, что обеспечивает нахождение в атмосфере свободного кислорода. В то же время в почве продуцируется углекислый газ, необходимый для непрерывного фотосинтеза и воспроизводства живого вещества. В почве осуществляется преобразование инертного молекулярного азота в формы, доступные для включения в биологический круговорот. В почве происходят сложные процессы трансформации соединений элементов-биогенов, в первую очередь серы и фосфора. В настоящее время в связи с интенсивной техногенной эмиссией металлов отчетливо выявляется роль педосферы как регулятора миграционных потоков масс тяжелых металлов и других элементов с переменной валентностью. Учитывая столь важную роль уникального биокосного образования, каким является педосфера, проблема охраны и рационального использования почв приобретает особо актуальное значение.

 

Рекомендуемая литература

 

Бирюкова О.Н., Орлов Д. С. Органические соединения и оксиды углерода в почве и биосфере // Почвоведение. — 2001. — № 2. — С. 180—191.

Вернадский В. И. О значении почвенной атмосферы и ее биогенной структуры // Почвоведение. — 1944. — № 4/5. — С. 137—143.

Глазовская М.А. Геохимия природных и техногенных ландшафтов СССР. - М.: Высш. шк., 1988. - 328 с.

Взаимодействие почвы с атмосферой / Г.А.Заварзин, Д.Г.Звягинцев, Л.О.Карпачевский и др. — М.: Изд-во МГУ, 1985.

Кабата-Пендиас И., Пендиас X. Микроэлементы в почвах и растениях. — М.: Мир, 1989. -439с.

Микроэлементы в почвах Советского Союза / Под ред. В. А. Ковды и Н.Г.Зырина. - М.: Изд-во МГУ, 1937. - 281 с.

Микроэлементы в почвах СССР / Под ред. Н. Г. Зырина и Г. Д. Белици-ной. - М.: Изд-во МГУ, 1981. - 252 с.

Орлов Д. С. Гумусовые кислоты почв. — М.: Изд-во МГУ, 1974. — 333с.

Химия тяжелых металлов, мышьяка и молибдена в почвах / Под ред. Н.Г.Зырина и Л.К.Садовниковой. — М.: Изд-во МГУ, 1985. — 208 с.

 

Контрольные вопросы

 

1. Дайте оценку педосфере как глобальному биогеохимическому фильтру газов, выделяемых в атмосферу.

2. Рассмотрите внутрипочвенные биогеохимические циклы газов, осуществляющиеся бактериальными системами.

3. В каких почвах продуцируется наибольшее количество СО2? В каких почвах, связанных системой геохимического сопряжения, углекислот-ное дыхание почвы подавляется?

4. Изложите представления о двух главных группах специфических органических образований почв.

5. Какие две противоположно направленные функции выполняет гумус почвы по отношению к рассеянным металлам?

6. Какова общая направленность биогеохимической трансформации минерального вещества почвы?

7. Назовите главные закономерности перераспределения тяжелых металлов при биогеохимической трансформации минерального вещества почвы.

8. Изложите представления о минералого-геохимических провинциях педосферы. Приведите примеры провинций, назовите их отличительные особенности.

9. Каков механизм фиксации избыточных масс тяжелых металлов и близких им поливалентных элементов в почвах?

10. Рассмотрите роль бактерий в процессах аккумуляции тяжелых металлов.

 

Темы для самостоятельной работы

 

1. На основании данных, приведенных в справочных материалах, определите количество СО2, которое может поступить в атмосферу при полном разрушении (окислении) напочвенного органического вещества суши. Сравните полученный результат с массой СО2, находящейся в настоящее время в атмосфере.

2. По литературным данным о концентрации меди и цинка рассчитайте запас этих металлов на единице площади по генетическим горизонтам (в г/м2 или т/км2).

 

Страница: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 |