Имя материала: Базы знаний интеллектуальных систем

 

Формализация

Строится формализованное представление концепций предметной области на основе выбранного языка представления знаний (ЯПЗ). Традиционно на этом этапе используются:

• логические методы (исчисления предикатов 1-го порядка и др.);

• продукционные модели (с прямым и обратным выводом);

• семантические сети;

• фреймы;

• объектно-ориентированные языки, основанные на иерархии классов, объектов.

Подпись: Формализация знаний — разработка базы знаний на языке представления знаний, который, с одной стороны, соот-ветствует структуре поля знаний, а с другой — позволяет реализовать прототип системы на следующей стадии программной реализации.

Все чаще на этой стадии используется симбиоз языков представления знаний, например, в системе ОМЕГА [Справочник по ИИ, 1990] — фреймы + семантические сети + полный набор возможностей языка исчисления предикатов. Средняя продолжительность 1-2 месяца. Подробно см. в главах 3, 4.

 

Реализация

Создается прототип экспертной системы, включающий базу знаний и остальные блоки, при помощи одного из следующих способов:

• программирование на традиционных языках типа Pascal, C++ и др.;

• программирование на специализированных языках, применяемых в задачах искусственного интеллекта: LISP [Хювянен, Сеппянен, 1991], FRL [Байдун, Бунин, 1990], SMALLTALK [Справочник по ИИ, 1990] и др.;

• использование инструментальных средств разработки ЭС типа СПЭИС [Ковригин, Перфильев, 1988], ПИЭС [Хорошевский, 1993], G2 [Попов, Фоминых, Кисель, 1996];

• использование «пустых» ЭС или «оболочек» типа ЭКСПЕРТ [Кирсанов, Попов, 1990], ФИАКР [Соловьев, Соловьева, 1989] и др.

 

Подпись: Реализация — разработка программного комплекса, демонстрирующего жизнеспособность подхода в целом. Чаще всего первый прототип отбрасывается на этапе реализации действующей ЭС.Средняя продолжительность 1-2 месяца. Более подробно эти вопросы рассматриваются в главе 6.

 

Тестирование

Оценивается и проверяется работа программ прототипа с целью приведения в соответствие с реальными запросами пользователей. Прототип проверяется на:

• удобство и адекватность интерфейсов ввода/вывода (характер вопросов в диалоге, связность выводимого текста результата и др.);

• эффективность стратегии управления (порядок перебора, использование нечеткого вывода и др.);

• качество проверочных примеров;

• корректность базы знаний (полнота и непротиворечирость правил).

Подпись: Тестирование — выявление ошибок в подходе и реализации прототипа и выработка рекомендаций по доводке системы до-промышленного варианта.

Средняя продолжительность 1-2 недели.

 

2.4.4. Развитие прототипа до промышленной ЭС

 

При неудовлетворительном функционировании прототипа эксперт и инженер по знаниям имеют возможность оценить, что именно будет включено в разработку окончательного варианта системы.

Если первоначально выбранные объекты или свойства оказываются неподходящими, их необходимо изменить. Можно сделать оценку общего числа эвристических правил, необходимых для создания окончательного варианта экспертной системы. Иногда [Хювянен, Сеппянен, 1991] при разработке промышленной и/ или коммерческой системы выделяют дополнительные этапы для перехода (табл. 2.1).

демонстрационный прототип ® действующий прототип ® промышленная система ® коммерческая система

Однако чаще реализуется плавный переход от демонстрационного прототипа к промышленной системе, при этом, если программный инструментарий был выбран удачно, не обязательно даже переписывать окончательный вариант другими программными средствами.

Понятие же коммерческой системы в нашей стране входит в понятие «промышленный программный продукт», или «промышленная ЭС» (в этой работе).

Основная работа на данном этапе заключается в существенном расширении базы знаний, то есть в добавлении большого числа дополнительных правил, фреймов, узлов семантической сети или других элементов знаний. Эти элементы знаний обычно увеличивают глубину системы, обеспечивая большее число правил для трудно уловимых аспектов отдельных случаев. В то же время эксперт и инженер по знаниям могут увеличить базу знаний системы, включая правила, управляющие дополнительными подзадачами или дополнительными аспектами экспертной задачи (метазнания).

Таблица 2.1.

Переход от прототипа к промышленной экспертной системе

 

Система

Описание

Демонстрационный прототип ЭС

Система решает часть задач, демонстрируя жизнеспособность подхода (несколько десятков правил или понятий)

Исследовательский прототип ЭС

Система решает большинство задач , но неустойчива в работе и не полностью проверена (несколько сотен правил или понятий)

Страница: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 |