Имя материала: Базы знаний интеллектуальных систем

• Глубинные — абстракции, аналогии, схемы, отображающие структуру и природу процессов, протекающих в предметной области. Эти знания объясняют явления и могут использоваться для прогнозирования поведения объектов.

 

Пример 1.2

Поверхностные знания: «Если нажать на кнопку звонка, раздастся звук. Если болит голова, то следует принять аспирин».

Глубинные знания: «Принципиальная электрическая схема зввонка и проводки. Знания физиологов и врачей высокой квалификации о причинах, видах головных болей и методах их лечения».

 

Современные экспертные системы работают в основном с поверхностными знаниями. Это связано с тем, что на данный момент нет универсальных методик, позволяющих выявлять глубинные структуры знаний и работать с ними.

Кроме того, в учебниках по ИИ знания традиционно делят на процедурные и декларативные. Исторически первичными были процедурные знания, то есть знания, «растворенные» в алгоритмах. Они управляли данными. Для их изменения требовалось изменять программы. Однако,с развитием искусственного интеллекта приоритет данных постепенно изменялся, и все большая часть знаний сосредоточивалась в структурах данных (таблицы, списки, абстрактные типы данных), то есть увеличивалась роль декларативных знаний.

Сегодня знания приобрели чисто декларативную форму, то есть знаниями считаются предложения, записанные на языках представления знаний, приближенных к естественному и понятных неспециалистам.

 

1.3.2. Модели представления знаний

 

Существуют десятки моделей (или языков) представления знаний для различных предметных областей. Большинство из них может быть сведено к следующим классам:

• продукционные модели;

• семантические сети;

• фреймы;

• формальные логические модели.

 

Продукционная модель

 

Подпись: Продукционная модель или модель, основанная на правилах, позволяет представить знания в виде предложений типа «Если (условие), то (действие)».Под «условием» (антецедентом) понимается некоторое предложение-образец, по которому осуществляется поиск в базе знаний, а под «действием» (консеквен-том) — действия, выполняемые при успешном исходе поиска (они могут быть промежуточными, выступающими далее как условия и терминальными или целевыми, завершающими работу системы).

Чаще всего вывод на такой базе знаний бывает прямой (от данных к поиску цели) или обратный (от цели для ее подтверждения — к данным). Данные — это исходные факты, хранящиеся в базе фактов, на основании которых запускается машина вывода или интерпретатор правил, перебирающий правила из продукционной базы знаний (см. далее).

Продукционная модель чаще всего применяется в промышленных экспертных системах. Она привлекает разработчиков своей наглядностью, высокой модульностью, легкостью внесения дополнений и изменений и простотой механизма логического вывода.

Имеется большое число программных средств, реализующих продукционный подход (язык OPS 5; «оболочки» или «пустые» ЭС — EXSYS Professional, Kappa, ЭКСПЕРТ; ЭКО, инструментальные системы ПИЭС [Хорошевский, 1993] и СПЭИС [Ковригин, Перфильев, 1988] и др.), а также промышленных ЭС на его основе (например, ЭС, созданных средствами G2 [Попов, 1996]) и др.

 

Семантические сети

Термин семантическая означает «смысловая», а сама семантика — это наука, устанавливающая отношения между символами и объектами, которые они обозначают, то есть наука, определяющая смысл знаков.

Семантическая сеть — это ориентированный граф, вершины которого — понятия, а дуги—отношения между ними.

В качестве понятий обычно выступают абстрактные или конкретные объекты, а отношения — это связи типа: «это» («АКО — A-Kind-Of», «is»), «имеет частью» («has part»), «принадлежит», «любит». Характерной особенностью семантических сетей является обязательное наличие трех типов отношений:

• класс — элемент класса (цветок — роза); в свойство — значение (цвет — желтый);

• пример элемента класса (роза — чайная).

Можно предложить несколько классификаций семантических сетей, связанных с типами отношений между понятиями.

По количеству типов отношений:

• Однородные (с единственным типом отношений).

• Неоднородные (с различными типами отношений). По типам отношений:

• Бинарные (в которых отношения связывают два объекта).

• N-арные (в которых есть специальные отношения, связывающие более двух понятий).

Наиболее часто в семантических сетях используются следующие отношения:

• связи типа «часть — целое» («класс — подкласс», «элемент —-множество», и т. п.);

• функциональные связи (определяемые обычно глаголами «производит», «влияет»...);

• количественные (больше, меньше, равно...);

• пространственные (далеко от , близко от, за, под, над...);

• временные (раньше, позже, в течение...);

• атрибутивные связи (иметь свойство, иметь значение);

• логические связи (И, ИЛИ, НЕ);

• лингвистические связи и др.

Проблема поиска решения в базе знаний типа семантической сети сводится к задаче поиска фрагмента сети, соответствующего некоторой подсети, отражающей поставленный запрос к базе.

Страница: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 |