Имя материала: Биология с основами Экологии

Автор: Александр Петрович Пехов

Если акридин оранжевый присутствует в полинуклеотидной цепи-шаблоне, то результатом будет добавление основания в новую цепь в процессе репликации ДНК. Если же акридин оранжевый присутствует в клетке во время репликации ДНК, то он может включаться в новую цепь вместо основания, имитируя парное (противоположное) основание в цепи-шаблоне, и затем выйти. Это приводит к тому, что вновь реплицированной цепи будет недоставать основания, т. е. она будет реплицирована с делецией по основанию- Делеции могут затрагивать несколько оснований. Например, описаны делеции 15 оснований, которые сопровождались утратой в белке 5 аминокислот.

Дупликации (добавление) 1—2 оснований могут приводить также к мутациям со сдвигом «рамки считывания» кода. Если дупли-кация происходит внутри гена, то «рамка считывания» нарушается на большом протяжении.

Делеции и дупликации азотистых оснований представляют собой молекулярный механизм и мутации митохондриальной ДНК человека. Установлено, что из мтДНК человека могут быть делегированы сегменты длиной до 5000 пар оснований.

Особую форму молекулярных механизмов генных мутаций представляют повторы триплетов азотистых оснований. Наличие в молекулах ДНК повторов триплетов оснований сопровождается нарушениями нормального цикла репликации ДНК, с одной стороны, и аномальным синтезом белка (из-за повторов аминокислоты, кодируемой повторяющимся триплетом), с другой стороны. Например, мутации гена, контролирующего белок хантингтан, недостаток которого у человека сопровождается болезнью Хантингтона, заключаются в резком увеличении повторов триплета ЦАГ.

 

§ 48 Репарация повреждений ДНК

 

Мутагенные и летальные эффекты мутагенов сопровождаются структурными повреждениями, которые они вызывают в молекулах ДНК. Например, в геноме человека непрерывно происходят случайные изменения (повреждения), но сохраняются лишь отдельные из них. Причем очень редко. Так из 1000 замен азотистых оснований лишь одна приводит к мутациям. Причина заключается в том, что эти повреждения часто подвержены восстановлению. Процесс реконструкции повреждений ДНК называют восстановлением или репарацией ДНК.

Характер и механизмы исправления повреждений наиболее полно изучены в случае повреждений, индуцированных УФ-излучени-ем. Клетки реагируют на УФ-излучение тем, что в их ДНК образуются повреждения, главные из которых представляют собой фотохимические изменения в пиримидиновых основаниях, переходящие в пиримидиновые димеры, в частности в тиминовые. Последние образуются за счет ковалентного связывания соседних тиминовых оснований в одной и той же цепи молекулы посредством присоединения углерода одного тимина к углероду другого тимина. Помимо тиминовых димеров в ДНК облученных клеток происходит формирование также цитозин-тиминовых и цитозин-цитозиновых димеров, однако частота их является меньшей. Димеризация фланкирующих оснований в гене сопровождается ингибированием транскрипции и репликации ДНК. Она ведет также к мутациям. В результате этого клетка может погибнуть или подвергнуться малигнизации.

Один их механизмов восстановления повреждений ДНК действует у многих видов организмов, включая человека, и состоит в том, что экспонирование в видимом свете клеток, предварительно обработанных УФ-излучением, приводит к снижению летального эффекта в несколько раз, т. е. к фотореактивации функций облученных клеток. Это реактивирующее действие видимого света связано с расщеплением (мономеризацией) пиримидиновых димеров, причем этот процесс обеспечивается светозависимыми фотореактивирующими ферментами. Второй механизм удаления димеров пиримидиновых оснований из ДНК облученных клеток получил название темновой репарации или вырезания-восстановления. Так же, как и фотореактивация, он представляет собой ферментативный процесс, но более сложный, притом проходящий в темноте (рис. 121). Этот механизм заключается в том, что тиминовые димеры с помощью ДНК-репариру-ющих нуклеаз, осуществляющих гидролиз фосфодиэфирных скелетных связей между нуклеотидами с повреждениями (со стороны 5' от тиминового димера) и нормальной частью молекулы ДНК, подвергаются «вырезанию» из цепи ДНК, в которой после этого остаются бреши. Затем происходит «залатывание» брешей восстановительным синтезом ДНК при участии ДНК-полимеразы, связывающейся с 3'-концом поврежденной цепи ДНК, и использовании противоположной (нормальной) цепи в качестве шаблона. Удаление пиримидиновых димеров из ДНК облученных клеток путем «вырезания» и «залатывания» брешей завершается смыканием вновь реплицированного участка ДНК с соседними поврежденными участками и «замазыванием» («сшиванием») сахарофосфатных скелетных связей с помощью ДНК-лигазы. Таким образом, реализация этого механизма обеспечивается тремя репарирующими ферментами.

 

Третий механизм восстановления повреждений ДНК называют пострепликационным, или рекомбинационным восстановлением (рис. 122). Он заключается в том, что синтез ДНК в УФ-облученных клетках идет с нормальной скоростью вдоль хромосомы лишь до димера, перед которым он замедляется на несколько секунд, после чего начинается вновь, но уже на другой стороне димера. Поскольку ДНК-полимераза перескакивает через димер, то в дочерней цепи ДНК образуется брешь. Вследствие этого район, содержащий димер в одном дуплексе, будет интактным в сестринском дуплексе, т. е. в дочерних молекулах ДНК одна цепь будет содержать пиримидиновые димеры, тогда как другая будет иметь бреши, которые фактически являются вторичными повреждениями. Следовательно, район, содержащий димеры в одном дуплексе, полностью сохраняется в сестринском дуплексе. Этот процесс заканчивается рекомбинацией вдоль молекулы ДНК после ее репликации, при которой дочерняя цепь, несущая в каком-либо участке брешь, спаривается другой дочерней цепью (комплементарной), несущей брешь в другом месте. Это спаривание позволяет восстановительный синтез, который обеспечивает восстановление правильной последовательности района в каждой бреши. В качестве шаблона используется соответствующий интактный район другой дочерней цепи. Рекомбинационные события на уровне каждой бреши приводят к реконструкции интактной молекулы ДНК, способной к дальнейшей репликации. Рекомбинационное восстановление ДНК обеспечивается рядом белков-рекомбиназ.

В ходе эволюции у клеток выработалась способность синтезировать репарирующие ферменты, которые синтезируются, когда начинают возникать повреждения ДНК. Например, у Е. coli открыта так называемая SOS-репарация, которая заключается в том, что любое повреждение ДНК, сопровождающееся нарушением ее репликации, ведет к усилению транскрипции большого количества генов (более 15), кодирующих репарирующие белки. Этот процесс сопровождается повышением выживаемости клеток. Известно также, что существуют репарирующие системы, которые активируются, если в ДНК образуются метилированные нуклеотиды. Подобные индуцированные системы репарации существуют, вероятно, и у эукариотических клеток.

Страница: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 |