Имя материала: Биология с основами Экологии

Автор: Александр Петрович Пехов

Эритроциты участвуют также в транспорте СО2 из тканей в легкие, откуда он выводится в процессе выдыхания. Эволюционным приобретением млекопитающих, в том числе человека, является то, что их гемоглобин приспособлен как для транспорта кислорода, так и для транспорта СОд, причем оба эти транспорта взаимоусиливаемы.

Кровь ответственна и за перенос питательных веществ из тонкого кишечника в печень и другие органы, а также за выведение шлаков из тканей в почки. Эти функции тоже развивались в направлении увеличения количественной способности в связи с увеличивающейся интенсификацией метаболизма по мере усложнения организации живых существ.

Диффузия кислорода, двуокиси углерода, питательных веществ и метаболитов происходит лишь в капиллярах.

Параллельно с развитием кровеносной системы шло развитие лимфатической системы, которая впервые появилась у хордовых. Эта система в ходе эволюции обособилась из венозной системы.

Лимфатическая система состоит из лимфатических сосудов, лимфатических узлов и лимфы.

Лимфатические сосуды построены из эластичной и мышечной тканей и выстланы внутри эндотелием. Для них характерен такой же внутренний объем, как и у кровеносных капилляров. Лимфатические сосуды очень разветвлены. Они в виде очень тонких капилляров начинаются с межклеточных пространств, формируя затем более крупные сосуды. С помощью лимфатических сосудов лимфа проходит от тканей в венозное русло. Все лимфатические сосуды сливаются в один общий сборный сосуд (млечный путь). Одиночные лимфатические узлы обнаруживаются в толще слизистой оболочки и подслизистой основы кишечника у рыб, земноводных, пресмыкающихся, птиц и млекопитающих, но групповые лимфатические узлы развиваются лишь у млекопитающих.

У позвоночных по мере усложнения их организации наступает приближение лимфатических капилляров к клеткам и лимфоид-ным узелкам. Например, расстояние между лимфатическими капиллярами, кишечными эпителиоцитами и лимфоидными узелками у рыб составляет 150-180 мкм, но затем прогрессивно уменьшается у земноводных, пресмыкающихся и птиц, составляя у млекопитающих всего лишь 50-30 мкм.

 

§ 90 Выделительная система

 

У простейших выделение продуктов обмена осуществляется через всю поверхность тела путем диффузии. Этот же механизм выделения действует также у губок и иглокожих, однако у некоторых из них освобождение от продуктов обмена осуществляется с помощью фагоцитоза.

У плоских червей, ротифер и некоторых немертин развивается примитивная выделительная система в виде протонефридий, которые представляют собой слепые канальцы, разветвленные по телу и снабженные на конце пламенной клеткой, проникающей в канадец (рис. 193). Продукты выделения поступают в цитоплазму пламенных клеток, а затем в канальцы, объединяющиеся и открывающиеся наружу в виде пор. Через эти поры продукты выделения и выходят в окружающую среду.

У круглых червей выделительная система в виде протонефридий представлена внутрицитоплазматическими каналами, проникающими в полость тела.

У кольчатых червей, у которых появляется вторичная полость (целом), развивается выделительная система в виде метанефридий, представляющих собой извитые канальцы, располагающиеся по два в каждом сегменте тела (рис. 194). Эти канальцы открываются во вторичную полость тела одним концом (нефро-стомом), снабженным мерцательными ресничками, а наружу (на боковой стороне гельминта) — другим (нефри-диопорой).

У кольчатых червей метанефридий очень многочисленны. У насекомых и других членистоногих выделительная система представлена слепыми каналь-цами (мальпигиевыми сосудами), включенными в целом и открывающимися в анальное отверстие. Эти канальцы выстланы полусферическим эпителием.

У моллюсков также имеются метанефридий, но они представлены всего лишь одной парой, каждая из которых открывается нефростомом в околосердечную полость, а другим концом в бронхиальную полость. Таким образом, выделительную функцию осуществляет структура, формируемая канальцами каждого метанефридия.

У хордовых выделительная система характеризуется дальнейшим усложнением и разнообразием, определяемым переходом от нефридий у низших хордовых к почкам трех «поколений» у позвоночных. У бесчерепных, в частности у ланцетника, выделительная система состоит из располагающихся в районе жаберной щели сегментированных канальцев, в которые жидкость поступает из це-лома через нефростомы и выводится в околожаберную полость через не-фридиоспоры. У ланцетника количество таких нефридий достигает до 100 пар.

У позвоночных в период эмбриогенеза из мезодермы развивается три «поколения» почек — предпочка, или головная почка (пронефрос) у круглоротых (миксин), первичная, или туловищная почка (мезонефрос) у круглоротых (миног), рыб и земноводных и вторичная, или тазовая почка (метанефрос) у пресмыкающихся, птиц и млекопитающих.

Усложнение выделительной системы отмечается в первую очередь в строении почечных канальцев. В предпочке почечные канальцы еще похожи на метанефридий, т. е. они являются канальцами, открывающимися мерцательным нефростомом в целом, а количество канальцев составляет 4-10. У миксин пара предпочечных протоков тянется от шейной части до клоаки.

Дальнейшее усложнение связано с развитием большей эффективности фильтрующей системы внутри канальцев. Для первичной почки характерно увеличение извилистости капилляр внутри канальцев, которых может быть около 100, концентрация их в клубочки и локализация в особых камерах (капсулах), образуемых стенкой канальцев, что приводит к образованию так называемых мальпигиевых телец. Первичные почки являются овальными телами.

Вторичная почка представляет собой уже дольчатый орган, канальцы которого (их количество доходит до 1 млн) открываются в мочеточник, переходящий в мочевой пузырь (у птиц последнего нет). У земноводных, пресмыкающихся и птиц протоки  выделительной системы открываются непосредственно в клоаку, тогда как у млекопитающих мочевой пузырь переходит в мочеиспускательный канал, открывающийся наружу.

Почки разных поколений развиваются из мезодермы. Пронефрос закладывается из парных зачатков. Разрастаясь, они сливаются в так называемый предпочечный проток. Закладка мезонефроса происходит сзади пронефроса. В процессе развития проток мезонефроса расщепляется на так называемые вольфов и мюллеров каналы.

Страница: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 |