Имя материала: Производственный менеджмент

Автор: В. А. Козловского

9.4. дерево решений задачи

 

Кроме использования платежной матрицы для решения данного типа задач, как уже указывалось, можно строить дерево решений. Например, для рассматриваемой в примере 9.1 задачи дерево имеет следующий вид (рис. 9.2).

 

 

Рис. 9.2. Дерево решений к примеру 9.1

 

При построении дерева узлы принятия решений означают выбор альтернатив, который делает менеджер, а узлы состояния внешней среды — возможные ответы среды. Если построение дерева идет слева направо, то расчет и принятие решений — справа налево:

• в узлах состояния внешней среды платежи «сворачиваются» в значения ЕМУ с соответствующими им весами-вероятностями;

• в узлах принятия решений происходит выбор лучших альтернатив, например, по критерию EMV=> max.

При решении простых задач дерево не дает никаких преимуществ, но для решения многоуровневых задач его преимущества неоспоримы. Дерево, как любое графическое представление, более наглядно, поэтому предпочтительнее в более сложных ситуациях.

Построение дерева рассмотрим также на примере решения задачи тактического планирования. Вьщеление только двух состояний внешней среды - благоприятного и неблагоприятного — далеко не единственный и не лучший способ оценки внешней среды, который применяется лишь в случаях, когда информация о среде ограничена. Альтернативных вариантов стратегий в общем случае может быть много. И это позволяет уточнить решение задачи.

 

Пример 9.2

Оптовый склад обслуживает кино- и фотолаборатории, в том числе отпускает им проявитель. Статистика уровня продаж: 11 упаковок продаются с вероятностью 45\%, 12 упаковок — с вероятностью 35\%, 13 упаковок - 20\%. Прибыль от реализации одной упаковки — 35 руб. Непроданные упаковки в конце недели уничтожаются, при этом потери составляют 56 руб. с каждой упаковки. Какой недельный запас проявителя является Для склада оптимальным?

Отметим, что сумма вероятностей продажи 11, 12 и 13 упаковок равна 100\%. Это означает, что никаких других объемов недельных продаж не зарегистрировано и в расчет они не могут быть включены. Рассчитаем платежи:

а) проданы 11 упаковок: 35 х 11 = 385 руб., при запасе в И упаковок;

б) проданы 11 упаковок при запасе в 12, а одна упаковка уничтожена1 385-56 = 329 руб.; -

в) проданы 12 упаковок (весь запас): 35 х 12 = 420 руб., наличие спроса из 13 упаковок здесь ничего не меняет;

г) при запасе в 13 упаковок возможны три варианта: продажа 11 упаковок (385 - 56 х 2 = 273 руб., две упаковки уничтожены), продажа 12 упаковок (420 — 56 = 364 руб., одна упаковка уничтожена), продажа 13 упаковок (35x13 = 455 руб.).

Результаты расчета сведены в табл. 9.2. Расчет ЕМУ показывает, что лучший вариант решения - запасать 11 упаковок. Рассчитаем предельную цену полной информации о продажах (алгоритм ее расчета будет показан в следующем разделе):

EVPI = 385 х 0,45 + 420 х 0,35 + 455 х 0,20 - 385 = 26,25 руб. Дерево решений этой задачи имеет следующий вид:

 

Узлы состояния

внешней среды

Рис. 9.3. Дерево решений к примеру 9.2

 

Таблица 9.2

 

 Запас

 

Спрос, руб.

 ЕМУ, руб.

 

 1 1 упаковок

 12 упаковок

 13 упаковок

11 упаковок

[385]

385

385

[385 1

12 упаковок

329

[420]

420

379,05

13 упаковок

273

364

[455]

341,25

Вероятность

0,45

0,35

0,20

 

 

Страница: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 |