Имя материала: Психогенетика

Автор: И.В. Равич-Щербо

1. уровни анализа генетической детерминации цнс

 

При изучении строения и работы ЦНС как относительно самостоятельные выделяются следующие уровни анализа: клеточный, мор-фофункциональный и системный. Каждый уровень имеет собственные объекты исследования и изучает присущие этим объектам закономерности функционирования. Соответственно вопрос о роли генотипа в формировании ЦНС также должен рассматриваться применительно к трем перечисленным уровням. Первый связан с генетической детерминацией функций клеточных элементов и нервной ткани, второй - морфологических и функциональных особенностей отдельных образований, из которых состоит головной мозг, третий - организации функциональных систем, лежащих в основе поведения и психики.

 

НЕЙРОННЫЙ УРОВЕНЬ

«Строительные блоки» нервной системы - нервные клетки (нейроны). Главной особенностью нейронов является способность наружной мембраны генерировать нервные импульсы и через особое образование - синапс - передавать информацию от одного нейрона к другому. Импульс передается через синапс с помощью особых биохимических веществ-посредников (медиаторов). Синапсы и медиаторы могут быть как возбуждающие, так и тормозные. Предположительно мозг человека содержит 10" нейронов, причем по своей организации и функциональному назначению нервные клетки обнаруживают чрезвычайное разнообразие. Нейроны химически, морфологически и функционально специализированы.

Как и любая живая клетка, каждый нейрон в ЦНС реализует генетически обусловленную программу жизнедеятельности, выполняя предназначенные ему задачи: обработку приходящих возбуждений и генерацию собственного ответа. Для выполнения данных задач он нуждается в ресурсах, а для пополнения ресурсов (запасов нейроактив-ных веществ, «расходующихся» в процессах жизнедеятельности) необходим определенный уровень их синтеза. Принято считать, что все эти процессы находятся под контролем генотипа.

По современным представлениям, функциональная специализация нейронов складывается на молекулярно-генетическом уровне. Она проявляется: во-первых, в формировании особых молекулярных образований на поверхности нейрона (хеморецепторов), которые обладают избирательной чувствительностью к действующим на нейрон медиаторам и другим биологически активным веществам; во-вторых, в особенностях секреторного аппарата нейрона, который обеспечивает синтез медиаторов и соответствующих ферментов. Биохимическая специализация возникает в результате взаимодействия генетической программы нейрона и той информации, которая поступает из его внешнего окружения [7, 80, 119, 126].

Однако подобные представления в значительной степени априорны, потому что конкретные генетические механизмы, контролирующие жизнедятельность нейронов и нервной системы в целом, еще далеко не изучены. По некоторым данным, в мозге экспрессируется не менее 2500 генов, но так или иначе охарактеризованы около 5\% от этого числа.

Каждый нейрон, имея, как и любая другая клетка, ядерный аппарат, несет в себе полную генетическую информацию о морфофунк-циональных особенностях организма, но в нейронах, как и в других клетках организма, активируется лишь часть генетической информации. Однако число экспрессируемых в нейронах генов резко превышает число генов, экспрессируемых в клетках других тканей организма. Мощность работы генетической информации в нейронах доказывается методом ДНК-РНК-гибридизации и путем прямого анализа синтезируемых белков [139].

Метод ДНК-РНК-гибридизации позволяет оценить число участков ДНК, с которых в клетках данной ткани считывается генетическая информация. Для этой цели из клеток выделяется полный набор молекул информационной РНК, которые списаны с функционирующих участков ДНК, т.е. со всего набора экспрессированных генов. В смеси с полным набором ДНК из данных клеток выделенные молекулы информационной РНК вступают в комплементарные сочетания (гибридизируются) с гомологичными им участками ДНК. Определяя объем набора участков ДНК, вступающих в гибридизацию, можно судить об активности генома.

Показано, что молекулы информационной РНК, выделенные из клеток соматических тканей (печень, почки), вступают в гибридизацию с относительно небольшим объемом ДНК (около 4-6\%). Это свидетельствует о том, что сравнительно небольшая специализированная группа генов обеспечивает специфические особенности соматических тканей. В то же время для тканей мозга аналогичное число намного выше. По разным данным, оно колеблется в довольно широких пределах, в среднем составляя около 30\%, т.е. в несколько раз больше, чем в любом другом органе. Более того, в нервных тканях разных отделов мозга, по-видимому, экспрессируется различное число генов. Есть основания полагать, что наибольший объем экспресси-руемых генов характерен для филогенетически молодых отделов мозга, в первую очередь для областей коры, связанных с обеспечением специфически человеческих функций. Так, установлено, что в клетках ассоциативных зон коры больших полушарий экспрессируется приблизительно 35,6\% уникальных последовательностей ДНК, а в клетках проекционных зон - 30,8\% [26, 139]. Не исключено, что именно различия в объеме экспрессируемой генетической информации лежат в основе функциональной специализации разных отделов мозга.

Одной из наиболее поразительных особенностей нервной системы является высокая точность связей нервных клеток друг с другом и с различными периферическими органами. Создается впечатление, что каждый нейрон «знает» предназначенное для него место. В процессе формирования нервной системы отростки нейронов растут по направлению к своему органу - «мишени», игнорируя одни клетки, выбирая другие и образуя контакты (синапсы) не в любом участке нейрона, а, как правило, в его определенной области. Особенно загадочной выглядит картина того, как аксонам (главным отросткам нейрона, через которые распространяются возникшие в нейроне импульсы) приходится протягиваться на значительные расстояния, изменять направление своего роста, образовывать ответвления прежде, чем они достигнут клетки-«мишени».

В основе столь высокой точности образования связей лежит принцип химического сродства, в соответствии с которым большинство нейронов или их малых популяций прибретают химические различия на ранних этапах развития в зависимости от занимаемого положения. Эта дифференцированность выражается в наличии своеобразных химических меток, которые и позволяют аксонам «узнавать» либо аналогичную, либо комплементарную метку на поверхности клетки-«ми-шени». Предполагается также, что в этом процессе важную роль играют топографические взаимоотношения нейронов и временная последовательность созревания клеток и их связей [83].

Согласно современным представлениям, значительную роль в процессах развития нервной ткани играет временной режим экспрессии генов, тесно связанный в своих механизмах с процессами межтканевых и межклеточных взаимодействий. Считается, что именно точные сроки экспрессии специфических генов детерминируют формирование специфического соотношения определенных медиаторных или гормональных продуктов в конкретные периоды развития. Жесткая временная последовательность экспресии генов лежит и в основе формирования морфологических особенностей мозга - структур и связей между ними.

Методом ДНК-РНК-гибридизации было показано, что в онтогенезе по мере формирования нейрона возрастает обьем активированной генетической информации. Данные, полученные путем гибридизации общей ДНК с молекулами информационной РНК, показали, что по мере роста усиливается активность, сложность генных эффектов в нейронах. У эмбриона человека в возрасте 22 недель в нейронах активны около 8\% генов, а в нейронах взрослых - 25\% и более [139].

Еще одной важной особенностью ранних этапов развития ЦНС является генетически обусловленная избыточность в образовании количества нейронов, их отростков и межнейронных контактов. Говоря другими словами, нейронов в ходе эмбриогенеза мозга возникает значительно больше, чем это характерно для взрослого индивида. Более того, формирующиеся нейроны образуют заведомо большее, чем требуется, количество отростков и синапсов. По мере созревания ЦНС эта избыточность постепенно устраняется: нейроны, оказавшиеся ненужными, их отростки и межклеточные контакты элиминируются. Гибель (выборочная элиминация) лишних нейронов, так называемый апоптоз, служит устранению избыточных отростков и синапсов и выступает как один из способов «уточнения» плана формирования нервной системы. Кроме того, гибель нейронов ограничивает и тем самым контролирует рост числа клеток. Она необходима для установления соответствия количества клеток в популяциях нейронов, связанных друг с другом. Апоптоз - активный процесс, реализация которого требует активации специфических генов.

Избыточность и элиминация нейронов выступают как два сопряженных фактора, взаимодействие которых способствует более точной координации и интеграции растущей нервной системы.

У человека интенсивный и избыточный синаптогенез (образование контактов между нейронами) происходит в течение первых двух лет жизни. Количество синапсов в раннем онтогенезе значительно больше, чем у взрослых. Постепенно уменьшаясь, их число доходит до типичного для взрослых Уровня приблизительно к 7-10 годам. Сохраняются же (это существенно) именно те контакты, которые оказываются непосредственно включенными в обработку внешних воздействий, т.е. под влиянием опыта происходит процесс избирательной, или селективной, стабилизации синапсов. В силу того, что избыточная синаптическая плотность рассматривается как морфологическая основа усвоения опыта, эти данные свидетельствуют о высокой потенциальной способности к усвоению опыта детей раннего возраста. Кроме того, можно полагать, что воспринимаемый благодаря этому на данном возрастном этапе опыт, образно говоря, «встраивается» в морфологию мозговых связей, в известной мере определяя их богатство, широту и разнообразие.

С другой стороны, гипотеза генетического программирования предполагает, что специфическое химическое «сродство» между окончаниями аксонов и постсинаптической клеткой генетически запрограммировано и однозначно приводит к формированию стабильных межклеточных контактов и связей. Однако число синапсов ЦНС человека оценивается цифрой 1014, в то время как геном содержит лишь 106 генов. Таким образом, маловероятно, что специфичность каждого отдельного синапса программируется отдельным геном или его определенным участком. Более рациональным выглядит предположение, что одним или несколькими генами кодируется медиаторная специфичность нейронов, а их рост до органа-«мишени» контролируется одним общим регуляторным механизмом. Такой эпигенетический механизм мог бы производить тонкую настройку связей нейронной сети. Однако реальные механизмы этого процесса пока не известны.

В заключение можно сказать, что исследования функций генетического аппарата нейрона и нервной системы в целом находятся в начальной стадии. Тем не менее с начала 90-х годов XX в. ведется систематическая работа по составлению всеобъемлющего каталога генов, активных в мозге человека.

Очевидно, на этом пути еще предстоят значительные открытия, которые, предположительно, будут связаны с решением следующих вопросов:

- Какая часть генов из числа всех генов, экспрессирующихся в мозге, является «мозгоспецифической», т.е. активирующейся только в мозге?

- Имеют ли «мозгоспецифические» гены общие черты, отличающие их от генов, которые активны в других тканях?

- Существуют ли особенности в составе мРНК нервных клеток разных типов?

- Как осуществляется регуляция экспрессии «мозгоспецифичес-ких» генов?

- Каковы структура и функции белков, кодируемых «мозгоспе-цифическими» генами?

 

МОРФОФУНКЦПОНАЛЬНЫЙ УРОВЕНЬ

Мозг современного человека высоко дифференцирован. Он состоит из множества относительно мелких и крупных структурных образований, объединенных в ряд морфофункциональных блоков. В соответствии с данными многих экспериментальных и клинических исследований каждому из блоков приписываются разные функции.

Так, в стволе и подкорковых структурах мозга локализованы центры, регулирующие витальные функции организма. Кроме того, к их функциям относятся: обеспечение тонизирующих и модулирующих влияний на разные уровни ЦНС, формирование биологических потребностей и мотиваций, побуждающих организм к действию (голод, жажда и др.), а также эмоций, сигнализирующих об успехе или неудаче в удовлетворении этих потребностей. Кора больших полушарий играет определяющую роль в обеспечении высших психических функций человека. В самом общем виде она (1) осуществляет прием и окончательную переработку информации, а также (2) организует на этой основе сложные формы поведения, причем первая функция связана преимущественно с деятельностью «задних» отделов коры, а вторая - с деятельностью «передних». Разные функции выполняют левое и правое полушария. Например, у «правшей» центры, управляющие ведущей правой рукой и речью, локализованы в левом полушарии.

Обобщенной морфологической характеристикой мозга служит его вес. Индивидуальные различия абсолютного веса мозга взрослых людей очень велики. При средних значениях 1400-1500 г диапазон крайних индивидуальных значений (из изученных) колеблется в пределах: от 2012 г (у И.С. Тургенева) до 1017 г. (у А. Франса). Коэффициент вариативности, по обобщенным данным, составляет приблизительно 8\%. У мужчин вес мозга в среднем на 200 г больше, чем у женщин. Вес мозга почти не зависит от размеров тела, но положительно коррелирует с размерами черепа.

Различия по весу мозга, по-видимому, в определенной степени обусловлены генетическими факторами. Об этом свидетельствуют специально выведенные линии мышей - с «высоким» и «низким» весом мозга. У первых масса мозга приблизительно в 1,5 больше, чем у вторых. Попытки установить связь между весом мозга и успешностью обучения мышей однозначных результатов не дали.

Вариабельность борозд и извилин на поверхности мозга чрезвычайно велика. Как подчеркивают морфологи, не обнаружено двух одинаковых экземпляров мозга с полностью совпадающим рисунком поверхности. Например, С.М. Блинков пишет: «Рисунок борозд и извилин на поверхности коры больших полушарий мозга у людей столь же различен, как их лица, и также отличается некоторым семейным сходством» [17, с. 24]. Одни борозды и извилины, в основном наиболее крупные, встречаются в каждом мозге, другие не столь постоянны. Вариабельность борозд и извилин проявляется в их длине, глубине, прерывистости и многих других более частных особенностях [17].

Индивидуальная специфичность характерна и для подкорковых образований, глубоких структур мозга, а также проводящих путей, соединяющих разные отделы мозга [139]. В то же время многообразие индивидуальных различий в строении коры и других образований мозга всегда находится в пределах общего плана строения, присущего человеку.

Индивидуальные различия в строении мозга дают основания для попыток связать их с индивидуально-психологическими различиями. Большое внимание уделялось поиску морфологических и цитоархи-тектонических (клеточных) оснований индивидуальных особенностей умственного развития, в первую очередь одаренности. Было установлено, что вес мозга не связан с умственным развитием человека Наряду с этим при анализе особенностей клеточного строения коры больших полушарий обнаружили, что индивидуальным особенностям психической деятельности соответствуют определенные соотношения в развитии проекционных и ассоциативных областей.

Так, постмортальные исследования мозга людей, которые обладали выдающимися способностями, демонстрируют связь между спецификой их одаренности и морфологическими особенностями мозга в первую очередь - с размерами нейронов в так называемом рецептивном слое коры. Например, анализ мозга выдающегося физика А. Эйнштейна показал, что именно в тех областях, где следовало ожидать максимальных изменений (передние ассоциативные зоны левого полушария, предположительно отвечающие за абстрактно-логическое мышление), рецептивный слой коры был в два раза толще обычного. Кроме того, там же было обнаружено значительно превосходящее статистическую норму число так называемых глиальных клеток, которые обслуживали метаболические нужды нейронов. Характерно, что в других отделах мозга Эйнштейна особых отличий не выявлено [418].

Предполагается, что столь неравномерное развитие мозга связано с перераспределением его ресурсов (медиаторов, нейропептидов и т.д.) в пользу наиболее интенсивно работающих отделов. Особую роль здесь играет перераспределение ресурсов медиатора ацетилхолина. Холинэр-гическая система мозга, в которой ацетилхолин служит посредником проведения нервных импульсов, по некоторым представлениям, обеспечивает информационную составляющую процессов обучения [82]. Эти данные свидетельствуют о том, что индивидуальные различия в умственной деятельности человека, по-видимому, связаны с особенностями обмена веществ в мозге.

Структурная индивидуализированность мозга, неповторимость топографических особенностей у каждого человека складывается в онтогенезе постепенно [171, 172]. Вопрос о том, как влияют генетические особенности на формирование индивидуализированное™ мозга, пока остается открытым. По-видимому, в формировании этих морфологических характеристик играют роль генетические факторы. Например, отмечается семейное сходство в рисунке борозд коры мозга. Кроме того, при сравнении мозга МЗ близнецов обнаружено довольно значительное сходство морфологических особенностей, причем в левом полушарии больше, чем в правом [427].

Наряду с этим существуют традиционные и разработанные методы неинвазивного изучения функциональной активности мозга. Речь идет о методах регистрации биоэлектрической активности мозга, в первую очередь коры больших полушарий. Методы регистрации энцефалограммы и вызванных потенциалов позволяют зарегистрировать активность отдельных зон коры больших полушарий, оценить индивидуальную специфичность этой активности как качественно, так и количественно и применить к полученным результатам генетико-ста-тистический анализ. По совокупности таких данных можно судить о роли генетических факторов в происхождении индивидуальных особенностей функциональной активности отдельных областей коры как в состоянии покоя, так и в процессе деятельности. Итоги конкретных исследований изложены в гл. XIII и XIV.

 

СИСТЕМНЫЙ УРОВЕНЬ

В широком понимании живая система представляет собой совокупность взаимосвязанных элементов, которые обладают способностью к совместному функционированию и приобретению свойств, не присущих отдельным входящим в ее состав элементам. В настоящее время принято считать, что мозг представляет собой «сверхсистему», состоящую из множества систем и сетей взаимосвязанных нервных клеток и структурных образований более высокого уровня.

Морфологически в строении мозга выделяются два типа систем: микро- и макросистемы. Первые представляет собой совокупность популяций нервных клеток, осуществляющих относительно элементарные функции. Примером микросистем могут служить нейронный модуль (вертикально организованная колонка нейронов и их отростков в коре больших полушарий) или гнезда взаимосвязанных нейронов и глиальных клеток в подкорковых структурах. Предполагается, что таким микроансамблям свойственна преимущественно жесткая генетически детерминированная форма конструкции и активности [176].

Сходные по своим функциям микроансамбли, или микросистемы, объединяются в макросистемы, сопоставимые с отдельными структурными образованиями мозга. Например, отдельные зоны коры больших полушарий, имеющие разное клеточное строение (цитоар-хитектонику), представляют собой разные макросистемы. Сюда же относятся системы подкорковых и стволовых образований, корково-под-корковые системы мозга [139].

Современная наука располагает методами, позволяющими экспериментально изучать некоторые аспекты функционирования мозговых систем. Речь идет об уже упоминавшихся ранее электрофизиологических методах: электроэнцефалограмме и вызванных потенциалах. Исходно энцефалограмма характеризует специфику функциональной активности той зоны мозга, где она регистрируется. Однако наряду с этим разработаны способы оценки взаимосвязанности локальных показателей биоэлектрической активности мозга при регистрации ее в разных отделах. В основе данного подхода лежит простая логика: если мозг работает как целое (система), то изменения в активности отдельных элементов системы должны иметь взаимосвязанный характер. Подробнее речь о них пойдет в гл. XIII, здесь же подчеркнем, что электрофизиологические показатели взаимодействия разных зон коры в покое и при реализации той или иной деятельности демонстрируют значительную межиндивидуальную вариативность. Последнее дает основание ставить вопрос о роли факторов генотипа и среды в происхождении этой вариативности. Другими словами, используя генети-ко-статистический анализ, можно выявить причины межиндивидуальной вариативности не только локальных электрофизиологических показателей, но и производных от них показателей, отражающих степень взаимосвязанности последних, т.е. работу мозговых систем.

 

Страница: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 |