Имя материала: Курс физики

Автор: Трофимова Таисия Ивановна

§ 3. ускорение и его составляющие

 

В случае неравномерного движения важно знать, как быстро изменяется скорость с течением времени. Физической величиной, характеризующей быстроту изменения скорости по модулю и направлению, является ускорение.

Рассмотрим плоское движение, т. е. движение, при котором все участки траектории точки лежат в одной плоскости. Пусть вектор v задает скорость точки А в момент времени t. За время Dt движущаяся точка перешла в положение В и приобрела  скорость, отличную от v как по модулю, так и направлению и равную v1 = v + Dv. Перенесем вектор v1 в точку А и найдем Dv (рис. 4).

                                          Рис. 4

 

Средним ускорением неравномерного движения в интервале от t до t+Dr называется векторная величина, равная отношению изменения скорости Ду к интервалу времени Dг:      

Мгиовеивым ускорением а (ускорением) материальной точки в момент време ни t будет предел среднего ускорения:

 

Таким образом, ускорение а есть векторная величина, равная первой производной скорости по времени.

Разложим вектор Dv на две составляющие. Для этого из точки А (рис. 4) по направлению скорости v отложим вектор , по модулю равный v1. Очевидно, что вектор , равный Dvt, определяет изменение скорости за время Dt по модулю: Dvt = v1 - v. Вторая же составляющая Dvn вектора Dv характеризует изменение скорости за время Dt по направлению.

Тангенциальная составляющая ускорения

 

т. е. равна первой производной по времени от модуля скорости, определяя тем самым быстроту изменения скорости по модулю.

Найдем вторую составляющую ускорения. Допустим, что точка В достаточно близка к точке А, поэтому Ds можно считать дугой окружности некоторого радиуса г, мало отличающейся от хорды АВ. Тогда из подобия треугольников АОВ и EAD следует , но так как AB=vDt, то

В пределе при Dt ® 0 получим v1 ® v.

 Поскольку v1 = v, угол EAD стремится к нулю, а так как треугольник EAD равнобедренный, то угол ADE между v и Dvn стремится к прямому. Следовательно, при Dt ® 0 векторы Dvn и v оказываются взаимно перпендикулярными. Так как вектор скорости направлен по касательной к траектории, то вектор Dvn, перпендикулярный вектору скорости, направлен к центру ее кривизны. Вторая составляющая ускорения, равная

называется нормальной составляющей ускорения и направлена по нормали к траектории к центру ее кривизны (поэтому ее называют также центростремительным ускорением). Полное ускорение тела есть геометрическая сумма тангенциальной и нормальной составляющих (рис. 5):

 

 

                                                Рис. 5

 

Итак, тангенциальная составляющая ускорения характеризует быстроту изменения скорости по модулю (направлена по касательной к траектории), а нормальная составляющая ускорения — быстроту изменения скорости по направлению (направлена к центру кривизны траектории).

В зависимости от тангенциальной и нормальной составляющих ускорения движение можно классифицировать следующим образом:

 

аt = 0, an = 0 — прямолинейное равномерное движение;

at = a = const, an = 0 — прямолинейное равнопеременное движение. При таком виде движения

Если начальный момент времени t1 = 0, а начальная скорость v1 = v0, то, обозначив t2 = t и v2 = v, получим a=(v—v0)/t, откуда

Проинтегрировав эту формулу в пределах от нуля до произвольного момента времени t, найдем, что длина пути, пройденного точкой, в случае равнопеременного движения

 

;

 

at = f(t), an = 0 – прямолинейное движение с переменным ускорением;

at = 0, an = const. При at = 0 скорость по модулю не изменяется, а изменяется по направлению. Из формулы an =v2/r следует, что радиус кривизны должен быть постоянным. Следовательно, движение по окружности является равномерным;

at = 0, an ¹ 0 — равномерное криволинейное движение;

 at = const, an ¹ 0  — криволинейное равнопеременное движение;

 at = f(t), an ¹ 0  — криволинейное движение с переменным ускорением.

 

Страница: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 |