Имя материала: Биомеханика

Автор: Владимир Иванович Дубровский

Полет футбольного мяча

 

По футбольному мячу ударяют так, что он взлетает под углом θ0 = 37° со скоростью 20 м/с. Используя формулы приведенные

в табл. 3.2 найдем дальность полета        

 

Таблица 3.2

Характеристики движения тела, брошенного под углом к горизонту, по двум осям (ось Y направлена вверх)

Характеристики

Ось Х

Ось Y

Начальная скорость

v0x = v0·cos(θ0)

v0y = v0 ∙ sin (θ0).

Ускорение

0

— g

Время полета

 

 

 

 

 

Дальность полета для случая, когда точки броска и приземления находятся на одной высоте

 

 

 

 

 

 

Максимальная высота

 

Скорость в момент t

vx   = v0x

vy   = v0y—gt

Координаты в момент t

х = vx .t

y = v0y ∙ t -

Максимальная высота подъема         

Полет пули

Из автомата производят выстрел в горизонтальном направлении (q0 = 0). Начальная скорость пули v0 = 715м/с. Расстояние до мишени х = 100 м. В нашем случае vx – v0x = v0 = 715 м/с; v0y = 0.

Из уравнения х = vx∙t найдем t = = 0,14с Координата точки мишени, в которую попадет пуля, находится из уравнения y= v0y ∙t = -0,1 м. Таким образом пуля опустится на 10 см. Чтобы скомпенсировать такое опускание, выстрел производят под небольшим углом вверх, для чего соответствующим образом устанавливают прицел.

 

Прыжок в длину с разбега (рис. 3.18)

 

Оценим теоретическую максимальную дальность прыжка в длину, определяемую физическими возможностями человека. Горизонтальную скорость v0x спортсмен набирает при разбеге.

Примем ее равной максимальной скорости спринтера: v0x = 10,5 м/с. Вертикальную скорость v0 спортсмен приобретает при отталкивании. Оценим ее исходя из того, что высота, на которую человек может поднять свой центр масс, прыгая вертикально вверх с места, приблизительно равна 0,6 м. Из формулы

 

 

Рис. 3.18. К описанию прыжка в длину с разбега

 

Найдем  v0y  = = 3,43 м/с. Прыгун отталкивается в вертикальном положении, а приземляется в «сидячем» положении. При этом центр масс опускается приблизительно на 0,6 м (при отталкивании центр масс находится на высоте ~1 м, а при приземлении на высоте ~0,4 м). Значит координата точки приземления у  -0,6 м.

Эта координата определяется формулой          Подставив численные значения, получим квадратное уравнение: 4,9-t2 — 3,43∙t — 0,6 = 0. Решив его, найдем время полета t = 0,845 с. Дальность прыжка найдем из формулы s = vx  ∙t = 8,87 м.

3.6. Движение по окружности, центростремительное и тангенциальное ускорения. Угловое ускорение

 

В природе движение тела чаще происходит по кривым линиям. Почти любое криволинейное движение можно представить как последовательность движений по дугам окружностей. В общем случае, при движении по окружности скорость тела изменяется как по величине, так и по направлению.

 

Страница: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 |