Имя материала: Биомеханика

Автор: Владимир Иванович Дубровский

4.5. динамика движения материальной точки по окружности.

Центростремительная и тангенциальная силы. Плечо и момент силы. Момент инерции. Уравнения вращательного движения точки

 

В данном случае материальной точкой можно считать тело, размеры которого малы по сравнению с радиусом окружности.

 В подразделе (3.6) было показано, что ускорение тела, движущегося по окружности, складывается из двух составляющих (см. рис. 3.20): центростремительного ускорения — ац тангенциального ускорения ат, направленных по радиусу и касательной соответственно. Эти ускорения создаются проекциями равнодействующей силы на радиус окружности и касательную к ней, которые называются центростремительной силой (F ) и тангенциальной силой (FT) соответственно (рис. 4.5).

 

                                                                                      ft

Рис. 4.5. Компоненты равнодействующей силы при неравномерном вращательном движении

 

Центростремительной силой называется проекция равнодействующей силы на тот радиус окружности, на котором в данный момент находится тело.

Тангенциальной силой называется проекция равнодействующей силы на касательную к окружности, проведенную в той точке, в которой в данный момент находится тело.

Роль этих сил различна. Тангенциальная сила обеспечивает изменение величины скорости, а центростремительная сила вызывает изменение направления движения. Поэтому для описания вращательного движения записывают второй закон Ньютона для центростремительной силы:

 

Fц=т·ац.

(4.11)

Здесь т — масса материальной точки, а величина центростремительного ускорения определяется по формуле (4.9).

В ряде случаев для описания движения по окружности удобнее использовать не центростремительную силу (Fц ), а момент силы, действующей на тело. Поясним смысл этой новой физической величины.

Пусть тело вращается вокруг оси (О) под действием силы, которая лежит в плоскости окружности.

Кратчайшее расстояние от оси вращения до линии действия силы (лежащей в плоскости вращения) называется плечом силы (h).

 

Рис. 4.6. Плечо силы (h)

 

На рис. 4.6 показаны действующая сила и ее плечо.

Моментом силы (М) относительно оси вращения называется произведение величины силы на ее плечо:

M = ±F·h. (4.12)

 

Момент силы берется со знаком «+», если сила стремится повернуть тело по часовой стрелке и со знаком «—» в противном случае.

Примечание. В некоторых случаях момент силы считают вектором, направленным по оси вращения. В данном учебнике такие случаи не рассматриваются.

Можно показать, что угловое ускорение (ε), с которым материальная точка движется по окружности, прямо пропорционально моменту (М) действующей на него силы:

Величина, входящая в знаменатель формулы (4.13), называется моментом инерции.

Моментом инерции (J) материальной точки относительно оси вращения называется произведение ее массы (т) на квадрат расстояния (R) до оси вращения:

J = m·R2. (4.14)

 

Из определения следует, что измеряется момент инерции в кг·м2.

Подставив момент инерции (4.14) в знаменатель формулы (4.13), получим уравнение описывающее вращение материальной точки под действием силы:

Угловое ускорение материальной точки равно отношению момента действующей на нее силы к моменту инерции точки относительно оси вращения.

Страница: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 |