Имя материала: Метрология

Автор: Сергеев Алексей Георгиевич

2.2. измерение и его основные операции

 

Все измеряемые ФВ можно разделить на две группы:

• непосредственно измеряемые, которые могут быть воспроизведены с заданными размерами и сравнимы с подобными, например длина, масса, время;

• преобразуемые с заданной точностью в непосредственно измеряемые величины, например температура, плотность. Такое преобразование осуществляется с помощью операции измерительного преобразования.

Суть простейшего прямого измерения состоит в сравнении размера ФВ Q с размерами выходной величины регулируемой многозначной меры q[Q] (см. 2.1.4). Условием реализации процедуры прямого измерения является выполнение следующих элементарных операций:

• измерительного преобразования измеряемой ФВ X в другую ФВ Q, однородную или неоднородную с ней;

• воспроизведения ФВ Qм заданного размера N[Q], однородной преобразованной величиной Q;

• сравнения однородных ФВ: преобразованной Q и воспроизводимой мерой qm= N[Q].

Структурная схема измерения показана на рис. 2.4. Для полу чения результата измерения необходимо обеспечить выполнение при N = q условия:

   

т.е. погрешность сравнения величин Q и qm должна быть минимизирована. В этом случае результат измерений находится как X = F-1{q[Q]}, где F-1 — операция, обратная операции F, осуществляемой при измерительном преобразовании.

                    Рис. 2.4. Структурная схема измерения

 

Измерительное преобразование — операция, при которой устанавливается взаимно однозначное соответствие между размерами в общем случае неоднородных преобразуемой и преобразованной ФВ. Измерительное преобразование описывается уравнением вида Q = F(X), где F — некоторая функция, или функционал (см. рис. 2.4). Однако чаще стремятся сделать преобразование линейным: Q = КХ, где К — постоянная величина.

Основное назначение измерительного преобразования — получение и, если это необходимо, преобразование информации об измеряемой величине. Его выполнение осуществляется на основе выбранных физических закономерностей. В измерительное преобразование в общем случае могут входить следующие операции:

• изменение физического рода преобразуемой величины;

• масштабное линейное преобразование;

• масштабно-временное преобразование;

• нелинейное или функциональное преобразование;

• модуляция сигнала;

• дискретизация непрерывного сигнала;

• квантование.

Операция измерительного преобразования осуществляется посредством измерительного преобразователя — технического устройства, построенного на определенном физическом принципе и выполняющего одно частное измерительное преобразование. Измерительные преобразователи рассмотрены в разд. 11.5.

Воспроизведение физической величины, заданного размера N[Q] — это операция, которая заключается в создании требуемой ФВ, с заданным значением, известным с оговоренной точностью. Операцию воспроизведения величины определенного размера можно формально представить как преобразование кода N в заданную физическую величину QM, основанное на единице данной ФВ [Q]: Qm= N[Q] (см. рис. 2.4).

Степень совершенства операции воспроизведения ФВ заданного размера определяется постоянством размера каждой ступени квантования меры [Q] и степенью многозначности, т.е. числом N воспроизводимых известных значений. С наиболее высокой точностью воспроизводятся основные ФВ: длина, масса, время, частота, напряжение и ток (см. разд.11.5).

Средство измерений, предназначенное для воспроизведения ФВ заданного размера, называется мерой.

Сравнение измеряемой ФВ с величиной, воспроизводимой мерой Qm,— это операция, заключающаяся в установлении отношения этих двух величин:

Q > Oм, Q < Qм или  Q = Qм. Точное совпадение сравниваемых величин, как правило, не встречается в практике измерений. Это обусловлено тем, что величина, воспроизводимая мерой, является квантованной и может принимать значения, кратные единице [Q]. В результате сравнения близких или одинаковых величин Q и qm может быть лишь установлено, что [Q – Qм] < [Q].

Методом сравнения называется совокупность приемов использования физических явлений и процессов для определения соотношения однородных величин. Наиболее часто это соотношение устанавливается по знаку разности сравниваемых величин. Далеко не каждую ФВ можно сравнить при этом с себе подобной. Все ФВ в зависимости от возможности создания разностного сигнала делятся на три группы. К первой группе относятся ФВ, которые можно вычитать и таким образом непосредственно сравнивать без предварительного преобразования. Это — электрические, магнитные и механические величины. Ко второй группе относятся ФВ, неудобные для вычитания, но удобные для коммутации, а именно: световые потоки, ионизирующие излучения, потоки жидкости и газа. Третью группу образуют ФВ, характеризующие состояние объектов или их свойств, которые физически невозможно вычитать. К таким ФВ относятся влажность, концентрация веществ, цвет, запах и др.

Параметры сигналов первой группы наиболее удобны для сравнения, второй — менее удобны, а третьей — непосредственно сравнивать невозможно. Однако последние необходимо сравнивать и измерять, поэтому их приходится преобразовывать в другие величины, поддающиеся сравнению.

 

Страница: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 |