Имя материала: Метрология

Автор: Сергеев Алексей Георгиевич

6.3.4. нормальное распределение (распределение гаусса)

 

Наибольшее распространение получил нормальный закон распределения, называемый часто распределением Гаусса:

                                   (6.6)

где s — параметр рассеивания распределения, равный СКО; Хц — центр распределения, равный МО. Вид нормального распределения показан на рис. 6.3.

           

Рис. 6.6. Экспоненциальные распределения, определяемые по

                формуле (6.5) при sl = 1 и Хц = 0

 

Широкое использование нормального распределения на практике объясняется центральной предельной георемой теории вероятностей [48, 49], утверждающей, что распределение случайных погрешностей будет близко к нормальному всякий раз, когда результаты наблюдений формируются под действием большого числа независимо действующих факторов, каждый из которых оказывает лишь незначительное действие по сравнению с суммарным действием всех остальных.

Вид экспоненциальных распределений при различных значениях показателя а приведен на рис. 6.6.

При введении новой переменной t = (х-Хц)/s из (6.6) получается нормированное нормальное распределение, интегральная и дифференциальная функции которого соответственно равны:

Нормирование приводит к переносу начала координат в центр распределения и выражению абсциссы в долях СКО. Значения интегральной и дифференциальной функций нормированного нормального распределения сведены в таблицы, которые можно найти в литературе по теории вероятностей [48, 49].

Определенный интеграл с переменным верхним пределом

                                             (6.7)

называют функцией Лапласа. Для нее справедливы следующие равенства: Ф(- ¥) = - ,5; Ф(0) = 0; Ф(+ ¥) = 0,5; Ф(t) = -Ф(t). Функция Лапласа используется для определения значений интегральных функций нормальных распределений. Функция F(t) связана с функцией Лапласа формулой F(t) = 0,5 + Ф(t). Поскольку интеграл в (6.7) не выражается через элементарные функции, то значения функции Лапласа для различных значений t сведены в таблицу (см. приложение 1).

 

Страница: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 |