Имя материала: Метрология

Автор: Сергеев Алексей Георгиевич

10.1.1. классификация измерительных сигналов

 

Сигналом называется материальный носитель информации, представляющий собой некоторый физический процесс, один из параметров которого функционально связан с измеряемой физической величиной. Такой параметр называют информативным.

Измерительный сигнал — это сигнал, содержащий количественную информацию об измеряемой физической величине. Основные понятия, термины и определения в области измерительных сигналов устанавливает ГОСТ 16465-70 "Сигналы радиотехнические. Термины и определения". Измерительные сигналы чрезвычайно разнообразны. Их классификация по различным признакам приведена на рис. 10.1.

 

               Рис. 10.1. Классификация измерительных сигналов

 

По характеру измерения информативного и временного параметров измерительные сигналы делятся на аналоговые, дискретные и цифровые.

Аналоговый сигнал — это сигнал, описываемый непрерывной или кусочно-непрерывной функцией Ya(t), причем как сама эта функция, так и ее аргумент t могут принимать любые значения на заданных интервалах Y Î (Ymin; Ymax) и t Î (tmin; tmax) (рис. 10.2,а).

 

Рис. 10.2. Аналоговый (а), дискретный (по времени) (б)

                 и цифровой (в) измерительные сигналы

 

Дискретный сигнал — это сигнал, изменяющийся дискретно во времени или по уровню. В первом случае он может принимать в дискретные моменты времени nТ, где Т = const — интервал (период) дискретизации, n = 0; 1; 2;...— целое, любые значения Yд(nT) Î (Yniin; Ymax), называемые выборками, или отсчетами. Такие сигналы (рис. 10.2,6) описываются решетчатыми функциями. Во втором случае значения сигнала Ya(t) существуют в любой момент времени t Î (tmin; tmax), однако они могут принимать ограниченный ряд значений hi = nq, кратных кванту q.

Цифровые сигналы — квантованные по уровню и дискретные по времени сигналы Yu(nT), которые описываются квантованными решетчатыми функциями (квантованными'Ъоследовательностя-ми), принимающими в дискретные моменты времени пТ лишь конечный ряд дискретных значений — уровней квантования h1, h2, .... hn (рис. 10.2,в).

Эти сигналы подробно рассмотрены в разд. 10.5.

По характеру изменения во времени сигналы делятся на постоянные, значения которых с течением времени не изменяются, и переменные, значения которых меняются во времени. Постоянные сигналы являются наиболее простым видом измерительных сигналов.

Переменные сигналы могут быть непрерывными во времени и импульсными. Непрерывным называется сигнал, параметры которого изменяются непрерывно. Импульсный сигнал — это сигнал конечной энергии, существенно отличный от нуля в течение ограниченного интервала времени, соизмеримого с временем завершения переходного процесса в системе, для воздействия на которую этот сигнал предназначен. Характеристики и параметры импульсных сигналов рассмотрены в разд. 10.4.

По степени наличия априорной информации переменные измерительные сигналы делятся на детерминированные, квазидетерми-нированные и случайные. Детерминированный сигнал — это сигнал, закон изменения которого известен, а модель не содержит неизвестных параметров. Мгновенные значения детерминированного сигнала известны в любой момент времени. Детерминированными (с известной степенью точности) являются сигналы на выходе мер. Например, выходной сигнал генератора низкочастотного синусоидального сигнала характеризуется значениями амплитуды и частоты, которые установлены на его органах управления. Погрешности установки этих параметров определяются метрологическими характеристиками генератора.

К вазидетер минированные сигналы — это сигналы с частично известным характером изменения во времени, т.е. с одним или несколькими неизвестными параметрами. Они наиболее интересны с точки зрения метрологии. Подавляющее большинство измерительных сигналов являются квазидетерминированными.

Детерминированные и квазидетерминированные сигналы делятся на элементарные, описываемые простейшими математическими формулами, и сложные. К элементарным относятся постоянный и гармонический сигналы, а также сигналы, описываемые единичной и дельта-функцией. Они рассмотрены в разд. 10.3. К сложным сигналам относятся импульсные и модулированные сигналы, описанные в разд. 10.4.

Сигналы могут быть периодическими и непериодическими. Непериодические сигналы делятся на почти периодические и переходные. Почти периодическим называется сигнал, значения которого приближенно повторяются при добавлении к временному аргументу надлежащим образом выбранного числа — почти периода. Периодический сигнал является-частным случаем таких сигналов. Почти периодические функции получаются в результате сложения периодических функций с несоизмеримыми периодами, например Y(t) = sin(wt) + sin(Ö2̅wt). Переходные сигналы описывают переходные процессы в физических системах.

Периодическим называется сигнал, мгновенные значения которого повторяются через постоянный интервал времени. Период Т сигнала — параметр, равный наименьшему такому интервалу времени, Частота f периодического сигнала —величина, обратная периоду.

Периодический сигнал характеризуется спектром. Различают три вида спектра:

• комплексный — комплексная функция дискретного аргумента, кратного целому числу значений частоты о> периодического сигнала Y(t), представляющая собой значения коэффициентов комплексного ряда Фурье:

                                               (10.1)

где k — любое целое число;

• амплитудный — функция дискретного аргумента, представляющая собой модуль комплексного спектра периодического сигнала:

                   (10.2)

где Re(z), Im(z) — действительная и мнимая части комплексного числа z;

• фазовый — функция дискретного аргумента, представляющая собой аргумент комплексного спектра периодического сигнала:

                           (10.3)

Периодической сигнал содержит ряд гармоник. Гармоника — гармонический сигнал с амплитудой и начальной фазой, равными соответствующим значениям амплитудного и фазового спектра периодического сигнала при некотором значении аргумента. Наличие высших гармоник в спектре периодического сигнала количественно описывается коэффициентом гармоник, характеризующим отличие формы данного периодического сигнала от гармонической (синусоидальной). Он равен отношению среднеквадратического значения сигнала суммы всех его гармоник, кроме первой, к средне-квадратическому значению первой гармоники:

                                                                 (10.4)

где Yi, Y1 — i-я и первая гармоники сигнала Y(t).

Периодические сигналы бывают гармоническими, т.е. содержащими только одну гармонику, и полигармоническими, спектр которых состоит из множества гармонических составляющих. К гармоническим сигналам относятся сигналы, описываемые функцией синуса или косинуса. Все остальные сигналы являются полигармоническими.

Случайный сигнал — это изменяющаяся во времени физическая величина, мгновенное значение которой является случайной величиной. Характеристики и параметры случайных сигналов, или, как еще говорят, процессов, рассмотрены в разд. 4.3.

Измерительным сигналам посвящена обширная научная литература. В качестве примера можно привести [89, 90].

 

Страница: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 |