Имя материала: Стратегия социологического исследования

Автор: Ядов Владимир Александрович

5. четыре важнейших ограничения квантификации первичных социальных характеристик

 

Мы рассмотрели различные приемы перевода качественных социальных признаков в их количественные выражения. Это очень ответственный момент процедуры социологических исследований.

Применение количественных методов и использование статистических показателей взаимосвязи социальных явлений и процессов как бы возводит социологию в ранг подлинной "строгой" науки. Создается впечатление математической точности выводов. Между тем квантификация сложных и далеко не однозначных социальных реалий накладывает немало ограничений на собственно математические операции с их измерениями. Математик работает с простыми однозначными абстракциями, в основе которых суждение "есть— нет" (т. е. наличие—отсутствие данного свойства). Социолог обязан постоянно помнить, что в действительности скрывается за величинами и символами, которыми мы оперируем.

В данном случае, мы обращаем внимание только на некоторые ограничения, связанные со специфическим видом формализации социальных данных, имея в виду наиболее распространенные и сравнительно простые приемы использования математической статистики в социологии.

Первое ограничение — соразмерность количественных показателей, фиксированных разными шкалами в рамках одного исследования.

Суммируем сведения о возможностях операций с числами в описанных выше шкалах (схема 14).

 

Схема 14

Типы шкал и допустимые для них операции с числами

Тип шкалы

Допустимые преобразования операций с числами (статистические меры и показатели)

Неупорядоченная номинальная шкала

 

 

Простая группировка, классификация в натуральных единицах (например, в количестве лиц разных профессий, попадающих в данные классы шкалы);

оценка центральной тенденции в показателях модальной группы (Мо), т. е. пункта шкалы с наибольшей численностью;

оценка рассеяния по пунктам шкалы в процентах к общей численности данных;

при характеристике связей — оценки сопряженности по критериям хи-квадрат (χ2), коэффициенту Чупрова (Т), Крамера (Те), Юла (Q) и подобным мерам сопряженности и ассоциации признаков — энтропийные показатели (Н)

Частично упорядоченная номинальная шкала

Порядковая ординарная шкала (шкала рангов)

 

 

Те же операции, что и выше, а в случае приведения шкалы к полностью упорядоченной — операции, перечисленные ниже

 

Монотонные преобразования шкалы и суммирование оценок (суммирование баллов и усреднение рангов), фиксированных в одной шкале;

при характеристике центральной тенденции —все предшествующие операции плюс расчет медианы (Me), для оценки рассеяния признаков — то же, что выше (процентовка), плюс оценка межквартильного диапазона (показателей квартильного от клонения: ∆, Q);

для характеристики связей — нее показатели, указанные выше, плюс коэффициенты ранговой корреляции (R)

Интервальная метрическая  шкала

 

 

При оценке центральной тенденции расчеты Мо, Me, а также среднеарифметической  ;

показатели меры рассеяния те же, что выше,плюс оценка стандартного (квадратического) отклонения, дисперсии (Д);

при оценке связей — все вышеперечисленное плюс коэффициенты парных и множественных корреляций

Идеальная метрическая шкала

Все операции с числами

 

 

Более сильная шкала отличается от ближайшей к ней относительно слабой тем, что допускает более широкий диапазон математических операций с числами. Все, что допустимо для слабой шкалы, допустимо и для сильной. Но не все, разрешимое для сильной, позволительно для слабой шкалы. Поэтому смешение в анализе мерительных эталонов разного типа приводит к тому, что не используются возможности сильных шкал: в этом случае все операции с числами должны удовлетворять требованиям, предъявляемым к относительно слабым шкалам.

Конечно, это предостережение теряет смысл, если социолог не намерен статистически сопоставлять данные, измеренные разными шкалами, и рассматривает их независимо друг от друга, а также в случае иных способов анализа, например, путем множественной классификации.

Второе общее ограничение связано с формой распределения величины, фиксированных описанными выше шкалами, которое предполагается нормальным.

На рис. 8 показаны варианты нормального и скошенного распределений, где нормальное (эталонное) обозначено пунктиром, а скошенное — сплошной линией. Нормальное гауссово распределение имеет вид симметричного колокола, у скошенного же по сравнению с нормальным в нашем случае "поднят" правый и  "опущен" левый конец (так называемые хвосты распределения). Для нормального распределения оценки меры рассеяния совпадают, т. е. М=Ме=Мо, а в скошенном "хвосты" распределения не влияют на среднюю арифметическую (М, другое часто встречающееся обозначение средней арифметической — , которая сдвигается в сторону его больших значений.

 

Рис. 8. Распределения: 1 — нормальное; 2 — скошенное

 

Возможны и бимодальные распределения, где образуются своего рода горбы, а также растянутые, как бы сплющенные. Анализ таких видов распределений должен быть особенно внимательным, так как в этом случае непригодны обычные оценки меры рассеяния.

В случае существенно скошенных и тем более бимодальных распределений можно:

(а) привести их к нормальному путем объединения градаций шкалы, образующих длинный "хвост" распределения. Например, значения 8,9 и 10 десятибалльной шкалы растянуты потому, что в них очень мало численности. Тогда объединим эти градации и соответственно переоценим пункты шкалы;

(б) при бимодальном распределении разумно порядковую шкалу перевести в неупорядоченную.

Итак, второе ограничение — особенности одномерных (не говоря уже о более сложных) распределений. Оно заключается в том, что необходимо внимательно изучать форму распределения с точки зрения его уклонения от нормального, симметричного.

Третье ограничение особенно неприятно. Оно состоит в том, что б социальных процессах нередки явления, измерение которых следует производить шкалами открытого типа, где полюс наибольших значений не фиксирован и может принимать любую величину.

Например, оценки размеров заработной платы, доходов в принципе должны давать нормальные и вполне допустимые скошенные распределения, так как есть социально и экономически обоснованные минимум и максимум зарплаты. Это — закрытая метрическая шкала оценок. То же самое можно сказать о численности детей в семье и т. п. явлениях.

Но при оценке многих субъективных состояний и показателей человеческой активности, например, результатов научной продуктивности ученых, предельно максимальные значения трудно предположить достоверно.

В негауссовых, в частности, так называемых распределениях Ципфа (рис. 9, в котором фиксированы логарифмы координат), на примере оценки числа публикаций ученых в области химии [278. С. 146] видно, что до 70\% из них имеют одну публикацию, около 25\% — две, 8—10\% — по три или четыре публикации, но только по 0,1 и 0,2\% достигают продуктивности в 20—30 публикациях.

Это распределение никоим образом не описывается гауссовым "колоколом". В последнем случае численность имеющих очень мало и очень много публикаций была бы примерно равной, а большинство ученых демонстрировали бы некоторое среднее число публикаций, например, по 7—8 (в гауссовой статистике — это различные показатели центральной тенденции распределения).

Однако применение негауссовых статистик в социальных науках вообще, в социологии в частности, крайне затруднительно, так как невозможно использовать закрытые шкалы, поскольку в большинстве случаев нет "естественных" эталонов измерения (число публикаций — один из примеров такого "естественного" эталона).

А если нам приходится изобретать шкалу, то недопустимо оставлять открытым один из ее полюсов.

 

Рис. 9. Негауссово распределение Ципфа: распределение численности научных публикаций ученых

Четвертое ограничение связано с особой природой социальных процессов, в которых статистические и детерминистские закономерности находятся в динамическом единстве. В определенных аспектах и на определенных отрезках времени социальные процессы вполне предсказуемы. Но во многих случаях это далеко не так, особенно в условиях социальных преобразований, кризисов социальных систем. В нестабильных системах малые внешние или внутренние воздействия способны вызвать неожиданное и неадекватное воздействию изменение.

Поэтому предлагается, используя для измерения первичных характеристик шкальные процедуры, прибегать к построению стохастических динамических моделей на основе "сценариев" возможного развития определенных социальных процессов [289]. Такие сценарии прогнозируются для разных временных интервалов, например начальной и завершающей стадий, которые могут быть существенно разными по составу участвующих факторов и по характеру связей между ними.

Итак, преимущества квантификации и использования жестких критериев надежности исходных данных небезусловны и могут обернуться упрощением, а то и искажением социальной реальности. Адекватные в исследовании массовидных социальных процессов, такие приемы утрачивают свои достоинства в изучении сознательно организованных действий или "отклоняющихся" явлений, тогда как нередко именно последние дают пищу для вдумчивого социального анализа. Без таких "уклонений" социальные процессы отображаются и виде схем, лишенных жизненных красок.

Строго формализованный количественный анализ имеет свои пределы, (298), за которыми могут быть утрачены качество, глубина и полнота осмысления действительности. Поэтому социолог обязан хорошо владеть многообразными гибкими методами изучения общественных проблем, т. е. уметь наблюдать, строить гипотезы, на основе несистематизированных впечатлений и бесед, переходя затем к более систематизированной и упорядоченной их проверке.

Практические советы

1. Приступая к разработке методов и процедур исследования, вначале продумайте, какие явления, свойства и объекты реально варьируют по их интенсивности, распространенности, состояниям выраженности, а какие могут быть фиксированы лишь в качественных отображениях.

2. Определяя способ квантификации (тип шкалы), соизмеряйте его не только с природой объекта, но и с целями исследования и возможностями последующего количественного анализа: излишняя квантификация — напрасная растрата усилий, недостаточная — упущенные возможности более обстоятельного изучения объекта.

3. Не забывайте, что всегда лучше опираться на достоверные и менее детальные сведения, чем на детальные и малодостоверные: отсюда — указания к выбору приемлемого типа шкал и дробности их метрики.

4. Изящный статистический анализ полученных данных будет вводить в заблуждение и нас самих и других, если ему не предшествовала добротная проверка надежности исходных измерений и регистрации фактов в целом.

5. Самое же главное состоит в том, что количественный анализ не самоцель, но лишь средство качественного: качественный анализ предшествует квантификации, качественным анализом завершается изучение количественных распределений и связей.

"гуманистической социологии", акцентирующей внимание на личностных смыслах социальных явлений и процессов.

Страница: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 |