Имя материала: Теория и методы принятия решений, а также Хроника событий в Волшебных странах

Автор: О.И. Ларичев

3. задачи с вазами

 

Теория полезности экспериментально исследовалась в так называемых задачах с вазами (или урнами). Ваза — это непрозрачный сосуд, в котором находится определенное (известное лишь организатору эксперимента) количество шаров различного цвета. Задачи с вазами типичны для группы наиболее простых задач принятия решений — задач статистического типа. Для решения этих задач надо знать элементарные начала теории вероятностей [4]. Человек делает выбор в этих задачах, основываясь на расчетах. Варианты действий выражены в наиболее простом виде.

Типовая задача для испытуемого может быть представлена следующим образом [3]. Перед испытуемым ставится ваза, которая может быть вазой 1-го или 2-го типа. Дается следующая информация: сколько имеется у экспериментатора ваз 1-го и 2-го типов; сколько черных и красных шаров в вазах 1-го и 2-го типов; какие выигрыши ожидают испытуемого, если он угадает, какого типа ваза; какие проигрыши ожидают его, если он ошибется. После получения такой информации испытуемый должен сделать выбор: назвать, к какому типу принадлежит поставленная перед ним ваза.

Пусть, например, экспериментатор случайно выбирает вазу для испытуемого из множества, содержащего 700 ваз 1-го типа и 300 ваз 2-го типа. Если перед испытуемым находится ваза 1-го типа и он угадает это, то получит выигрыш 350 денежных единиц (д.е.), если не угадает, его проигрыш составит 50 д.е. Если перед ним ваза 2-го типа и он это угадает, то получит выигрыш 500 д.е., если не угадает, его проигрыш составит 100 д.е. Примем, что полезность для испытуемого равна качеству денежных единиц. Испытуемый может предпринять одно из следующих действий: d1 — сказать, что ваза 1-го типа; d2 — сказать, что ваза 2-го типа.

Условия задачи можно представить в табл. 2.1.

Таблица 2.1.

Представление задачи с вазами

 

 

 

Тип вазы

Вероятность выбора вазы данного типа

Действия и выигрыши

di

d2

1

0,7

350

-100

2

0,3

-50

500

 

Что же делать человеку? Теория полезности отвечает: оценить среднюю (ожидаемую) полезность каждого из действий и выбрать действие с максимальной ожидаемой полезностью. В соответствии с этой рекомендацией мы можем определить среднее значение выигрыша для каждого из действий:

U(d1) = 0,7Ä350 - 0,3Ä50 = 230 д.е;

U(d2) = 0,3Ä500 - 0,7Ä100 = 80 д.е.

Следовательно, разумный человек выберет действие d1, а не действие d2.

Из этого примера следует общий рецепт действий для рационального человека: определить исходы, помножить их на соответствующие вероятности, получить ожидаемую полезность и выбрать действие с наибольшей полезностью.

Задачи с вазами помогут нам познакомиться с построением деревьев решений и принятием решений с их помощью.

 

Страница: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 | 201 |