Имя материала: Теория и методы принятия решений, а также Хроника событий в Волшебных странах

Автор: О.И. Ларичев

5. метод smart - простой метод  многокритериальной оценки

 

Подход, основанный на теории многокритериальной полезности, требует достаточно много усилий при практическом применении. В детальном примере из книги [7] приведено множество вопросов к ЛПР, ответы ЛПР в многочасовом диалоге с консультантом. Как реакцию на сложность методов, основанных на MAUT, можно оценить появление ряда эвристических методов, не имеющих строго математического обоснования, но использующих простые процедуры получения информации и ее агрегации в общую оценку альтернативы.

Одним из наиболее известных методов такого типа является метод SMART [10], предложенный В. Эдвард сом. Метод можно представить как совокупность следующих этапов:

1. Упорядочить критерии по важности.

2. Присвоить наиболее важному критерию оценку 100 баллов. Исходя из попарного отношения критериев по важности, дать в баллах оценку каждому из критериев.

3. Сложить полученные баллы. Произвести нормировку весов критериев, разделив присвоенные баллы на сумму весов.

4. Измерить значение каждой альтернативы по каждому из критериев по шкале от 0 до 100 баллов.

5. Определить общую оценку каждой альтернативы, используя формулу взвешенной суммы баллов.

6. Выбрать как лучшую альтернативу, имеющую наибольшую общую оценку.

7. Произвести оценку чувствительности результата к изменениям весов.

По признанию автора, метод SMART не учитывает возможную зависимость измерений и неаддитивность при определении общей ценности альтернативы [10]. Однако, по его мнению, метод прост и надежен при практических применениях, что более существенно. Проверка чувствительности к изменениям весов позволяет учесть влияние неточностей при измерениях и возможной зависимости между критериями.

 

Страница: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 | 201 |