Имя материала: Введение в эконометрику

Автор: Кристофер Доугерти

1.7. теоретическая дисперсия выборочного среднего

 

Если две переменные независимы (и следовательно, их совокупная ковариация равняется нулю), то теоретическая дисперсия суммы этих переменных будет равна сумме их теоретических дисперсий:

pop. var (х +у) = pop. var (jc) + pop. var (y) + 2 pop. cov (x, y) =

= pop. var (x) + pop. var (y) = o2 + a2. (1.21)

Из данного результата можно получить более общее правило о том, что теоретическая дисперсия суммы любого числа переменных равняется сумме их дисперсий при условии, что наблюдения независимы друг от друга. При этом можно показать, что если случайная переменная х имеет дисперсию а2, то дисперсия выборочного среднего х будет равна с2/п, где п — число наблюдений в выборке:

pop. var (х) = pop. var І*1      +    і - _L рор> Var (Х| + ...+ xn) = I      n      J /1-

= (pop.var(x{) + ...+ pop.var(*„)} = ~{c2 +...+ o2} = \{no2} = о2 /п. (1.22)

 

Как было показано в обзоре, выборочное среднее является наиболее эффективной несмещенной оценкой теоретического среднего при условии, что наблюдения проводятся независимо друг от друга на основе одного и того же распределения.

 

Страница: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 |