Имя материала: Моделирование экономических процессов

Автор: Власов М. П.

9.5. методы определения параметров производственных функиий

На практике применяются три основных метода определения параметров макроэкономических производственных функций:

на основе обработки рядов динамики (временных рядов);

на основе данных о структурных элементах агрегатов;

на основе данных о распределении национального дохода (распределительный метод).

При построении производственных функций необходимо избавляться от явлений мультиколлинеарности параметров и автокорреляции — в противном случае неизбежны грубые ошибки.

Рассмотрим наиболее часто встречающиеся аналитические представления производственных функций:

Линейная производственная функция:

Р = а1х1+...+а„хп,

где av ...,аг — оцениваемые параметры модели: здесь факторы производства замещаемы в любых пропорциях.

Функция Кобба-Дугласа основывается на предположении о понижающейся предельной отдаче ресурсов, постоянстве коэффициентов эластичности производств по затратам ресурсов. Предельный эффект затрат связан с дополнительным экономическим эффектом (доход, прибыль), вызываемый дополнительной затратой единицы одного ресурса при неизменной величине остальных, т. е. это предел соотношения прироста результата и затрат, которые его вызвали, т. е. частная производная результирующей функции по данному аргументу:

_ ди(х)

 

где Uj — предельный эффект использования ресурса j; и(х) — функция полезности (под функцией полезности можно понимать функцию эффективности); Xj — объем использования ресурса j.

Эластичность замещения ресурсов в любой точке кривой Кобба-Дугласа равна единице. Хотя данную функцию нельзя отнести к линейным, значения параметров Д ос, Р можно оценить с помощью линейного регрессионного анализа по методу наименьших квадратов. Для этого ее приводят к линейному виду, прологарифмировав обе части уравнения (обычно используются натуральные логарифмы):

 

Модификация функции, учитывающей технический прогресс, достигается введением дополнительного сомножителя е", где я — темп технического прогресса (константа).

Из гипотезы о том, что эластичности замещения между всеми факторами постоянны, выводится CES-функция:

с

Р = А[(1-а)К-ь + аГь]Ъ.

В этом случае эластичность замещения ресурсов не зависит ни от К, ни от L и, следовательно, постоянна

Отсюда и происходит название функции. Функция CES, как и функция Кобба-Дугласа, исходит из допущения о постоянном убывании предельной нормы замещения используемых ресурсов. Между тем эластичность замещения капитала трудом и, наоборот, замены труда капиталом в функции Кобба-Дугласа, равная единице, здесь может принимать различные значения, не равные единице, хотя она и является постоянной. Наконец, в отличие от функции Кобба-Дугласа, логарифмирование функции CES не приводит к линейному виду, что вынуждает использовать для оценки параметров более сложные методы нелинейного регрессионного анализа.

Функция VES (один из вариантов):

Р = АК~а-гНу' -ехр[сф].

Здесь эластичность замещения принимает различные значения в зависимости от уровня капиталовооруженности труда K/L, откуда и происходит название функции.

 

Страница: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 |