Имя материала: Возрастная физиология

Автор: М.М. Безруких

Глава 14. интегративная деятельность мозга

 

Принцип системной организации интегративной деятельности мозга

 

Представление о функции мозга как о результате динамической интеграции различных структур, выполняющих определенную, специфическую роль в формировании целостной деятельности мозга, впервые было сформулировано И. М. Сеченовым в 1863 г. Это представление, получившее дальнейшее развитие в трудах выдающихся физиологов И.П.Павлова, А.А.Ухтомского, Н.А.Бернштейна, П. К.Анохина, стало приоритетным в отечественной физиологии, послужив основой для объяснения механизмов целенаправленного поведения и мозговой организации психических процессов.

Высшая нервная деятельность. В учении о высшей нервной деятельности, созданном И.П.Павловым, огромное внимание уделяется нейрофизиологическим процессам, обеспечивающим приспособительные реакции организма на воздействия внешнего мира. Высшая нервная деятельность, согласно учению И.П.Павлова, — это совокупность сложных форм деятельности коры больших полушарий и ближайших к ним подкорковых структур, обеспечивающих взаимодействие целостного организма с внешней средой. В качестве нервного механизма, обеспечивающего реагирование на внешние воздействия, рассматривался условный рефлекс. В отличие от безусловных рефлексов, являющихся врожденными, сформировавшимися в ходе эволюции и передающимися по наследству, условные рефлексы возникают, закрепляются и угасают (если утрачивают свое значение) в течение жизни. Условные рефлексы могут образовываться на любые сигналы, реализуясь при участии высших отделов нервной системы. От стабильных безусловных условные рефлексы отличаются изменчивостью. В течение жизни индивидуума иные из них, утрачивая свое значение, угасают, другие вырабатываются. Образование условного рефлекса связано с установлением временной связи между двумя группами клеток коры: между воспринимающими условное и воспринимающими безусловное раздражение. Эта связь становится тем прочнее, чем чаще одновременно возбуждаются оба участка коры. После нескольких таких сочетаний связь оказывается настолько прочной, что потом при воздействии одного лишь условного раздражителя возбуждение возникает и во втором очаге.

В настоящее время образование временной связи между двумя корковыми центрами при выработке условного рефлекса рассматривается как один из механизмов внутрицентрального взаимодействия, обеспечивающего формирование навыка и поведение индивида. В условиях реального существования организма условный рефлекс является элементом, включенным в сложную целостную деятельность мозга — интегративную деятельность. Наличие сложной системы внутрикорковых и корково-подкорковых связей создает основу для более сложного взаимодействия нервных центров. Интегративная деятельность мозга в каждый момент времени осуществляется структурами мозга, объединенными в динамические системы, обеспечивающие приспособительный характер поведенческих реакций.

Принцип доминанты А. А. Ухтомского. А. А. Ухтомский, анализируя мозговые механизмы поведения сформулировал принцип доминанты. Согласно представлению А. А. Ухтомского, при осуществлении действия, обусловленного актуальными для данного момента сигналами или внутренними потребностями, возникает доминантный очаг возбуждения, создающий в мозгу динамическую констелляцию (объединение) нервных центров — функциональный рабочий орган. Констелляция нервных центров состоит из обширного числа пространственно разнесенных нервных элементов разных отделов ЦНС, временно объединенных для осуществления конкретной деятельности. Отдельные ее компоненты в разные моменты могут образовывать разные динамические констелляции, обеспечивающие выполнение определенных стоящих перед организмом целей и задач. А. А. Ухтомский обращал внимание на тот факт, что «нормальная деятельность мозга опирается не на раз и навсегда определенную статику различных фокусов как носителей отдельных функций, а на непрестанную межцентральную динамику нервных процессов на разных уровнях ЦНС». Тем самым подчеркивался не жесткий, а пластичный характер функциональных объединений, лежащих в основе интегративной деятельности мозга. Это определило понимание интегративной деятельности как результата системного динамического взаимодействия мозговых структур, обеспечивающего адаптивное реагирование и поведение индивида.

 

Рис. 57. Блок-схема функциональной системы П.К.Анохина

 

Концепция функциональной системы П. К. Анохина. Положения о системной организации деятельности мозга получили дальнейшее развитие в теории функциональных систем П. К. Анохина (рис. 57). Функциональная система представляет собой объединение элементов организма (рецепторов, нервных элементов различных структур мозга и исполнительных органов), упорядоченное взаимодействие которых направлено на достижение полезного результата, рассматриваемого как системообразующий фактор. Функциональная система формируется на основании целого ряда операций.

1. Афферентный синтез всей имеющейся информации, которая включает наличную афферентацию, следы прошлого опыта, мотивационный компонент. На основе синтеза всей этой информации обоснованно принимается решение и формируется программа действий.

2. Принятие решения с одновременным формированием программы действий и акцептора результатов действий — модели ожидаемого результата. Это означает, что до осуществления любого поведенческого акта в мозге уже имеется представление о нем; сходное представление об организации деятельности мозга было высказано Н.А. Бернштейном, считавшим, что всякому действию должно предшествовать создание «модели потребного будущего», т.е. того результата, на достижение которого направлена функциональная система.

3. Собственно действие, которое организуется за счет эфферентных сигналов из центральных структур к исполнительным органам, обеспечивающим достижение необходимой цели.

4. Сличение на основе обратной связи параметров совершенного действия с моделью — акцептором его результатов; обратная афферентация является необходимым фактором успешности каждого поведенческого акта и основой саморегуляции функциональной системы.

В состав функциональной системы включены элементы, принадлежащие как одной физиологической системе или органу, так и разным (пространственная разнесенность компонентов). Одни и те же элементы могут входить в состав разных функциональных систем. Стабильность состава компонентов функциональной системы и характер их взаимосвязи определяются видом реализуемой деятельности. Функциональные системы, обеспечивающие жизненно важные функции (дыхание, сосание), состоят из стабильных, жестко связанных компонентов. Системы, которые обеспечивают осуществление сложных поведенческих реакций и психических функций, включают в себя как жесткие, так и в значительно большей степени гибкие, пластичные связи, что создает высокую динамичность и вариативность их организации в зависимости от конкретных условий и задач.

 

Интегративные процессы и обработка информации в сенсорных системах

 

Сенсорные системы, или анализаторы. В обеспечении контактов организма с окружающим миром ведущая роль принадлежит сенсорным системам, осуществляющим прием и обработку внешних сигналов. На основе информационных процессов создается образ мира, складывается индивидуальный опыт, формируется познавательная деятельность. Представление о единой многоуровневой системе приема и анализа внешних сигналов впервые было сформулировано И. П. Павловым, создавшим учение об анализаторах. По И.П. Павлову, первичный анализ информации осуществляется тремя взаимосвязанными отделами: периферическим (рецепторный аппарат), проводниковым (проводящие пути от рецепторов и переключательные ядра таламуса) и центральным (проекционные области коры больших полушарий).

 

Рис. 58. Схема строения сетчатки

1 — пигментный слой; 2 — палочки; 3 — колбочки; 4 — биполярные нейроны; 5 — горизонтальные клетки; 6 — амакриновая клетка;

7 — ганглиозные клетки.

Пунктиром обозначено разделение сетчатки на слои

 

Рецепторы — специализированные образования, реагирующие на качественно различные виды (модальность) внешних сигналов: зрительный, слуховой, обонятельный, тактильный. Воспринимаемая рецепторами специфическая энергия (световые, звуковые волны) преобразуется в последовательность нервных импульсов, передающихся по специфической афферентной системе. Рецепторы различаются по строению, одни из них представлены сравнительно простыми клетками или нервными окончаниями, другие, например сетчатка глаза или кортиев орган уха, являются элементами сложноустроенных органов чувств.

Учитывая особую роль зрительной и слуховой сенсорных систем для человека и сложность их рецепторных структур, рассмотрим их строение, обеспечивающее восприятие сигналов соответствующей модальности.

 

 

Рис. 59. Звуковоспринимающий аппарат (кортиев орган)

 

Сетчатка (см. рис. 58) — многослойное образование. Она состоит из пигментного слоя, фоторецепторов и нескольких слоев нервных клеток. Фоторецепторы, воспринимающие световые волны, представлены двумя видами клеток: колбочками и палочками. Палочки обладают большей чувствительностью. Этот аппарат сумеречного зрения располагается на периферии сетчатки. В центре расположены колбочки, воспринимающие различные цвета, их чувствительность меньше и они функционируют только при ярком освещении. Нервные клетки осуществляют первичную обработку информации в сетчатке. Их аксоны образуют зрительный нерв, по которому информация передается в головной мозг. К моменту рождения сетчатка практически сформирована, колбочковый аппарат окончательно созревает в раннем постнатальном периоде, что касается зрительного нерва, то его миелинизация происходит в течение первых 3 мес., и это определяет значительное увеличение скорости передачи информации в мозг.

Звуковоспринимающий аппарат — кортиев орган расположен в улитке внутреннего уха (рис. 59). Его основная часть — покровная пластинка — состоит примерно из 24 тыс. тонких и упругих фиброзных волоконец. Вдоль основной пластинки в 5 рядов расположены опорные и волосковые клетки, воспринимающие звуковые волны. При распространении звуковых волн разные волосковые клетки реагируют на звуки разной высоты и интенсивности. Возникающие в этих клетках импульсы по слуховому нерву передаются в центральную нервную систему. Слуховая сенсорная система формируется очень рано и периферийный аппарат функционирует уже в пренатальном периоде.

Сенсорная информация из зрительного и слухового рецепторных аппаратов через релейные ядра таламуса поступает в проекционные отделы коры больших полушарий. Модально специфическая информация топически организована: от определенных участков рецепторного аппарата она поступает к определенным нейронам коры больших полушарий. Это так называемые рецептивные поля нейронов, способствующие пространственной организации сенсорных процессов.

Кодирование сенсорной информации. Информация о разных характеристиках стимула передается определенной последовательностью нервных импульсов — нервным кодом. Кодирование осуществляется числом и частотой импульсов в разряде, интервалами между разрядами, общей конфигурацией разряда. Как на основе нервного кода распознаются отдельные признаки, а затем складывается целостный образ? Наиболее убедительный ответ на вопрос о кодировании признаков дает точка зрения о наличии на разных уровнях сенсорной системы высокоспециализированных нервных клеток, избирательно реагирующих на определенный признак стимула — ориентацию, направление движения, интенсивность. Они получили название детекторов. Нейроны-детекторы, выделяющие из стимулов разные признаки (цвет, движение, ориентацию), расположены на разных уровнях ЦНС и в разных слоях коры. Нейроны, выделяющие сложные признаки, локализованы в верхних слоях коры и образуют объединения (нейронные ансамбли).

Для проекционных корковых зон наиболее характерны вертикально ориентированные нейронные ансамбли — колонки, впервые обнаруженные Маунткаслом в соматосенсорной коре. Одни колонки реагировали на прикосновение к поверхности тела, другие — на давление. Часть колонок реагировала на стимуляцию только одной половины тела. Колонки обнаруживаются и в других областях коры. По сложности обрабатываемой информации выделяют три типа колонок: микроколонки, макроколонки и гиперколонки, или модули (рис. 60).

Микроколонки реагируют лишь на определенную градацию какого-либо признака, например вертикальную или горизонтальную ориентацию; макроколонки, объединяя микроколонки, выделяют общий признак ориентации, реагируя на разные ее значения. Модуль выполняет обработку самых разных характеристик стимула (интенсивность стимула, цвет, ориентация, движение).

Иерархически организованная система связей от микроколонок к модулям обеспечивает возможность осуществляемого в проекционной коре тонкого дифференцированного анализа признаков разной сложности внутри одной сенсорной модальности.

Дальнейшая обработка сенсорно специфической информации осуществляется с участием так называемых гностических нейронов, получающих информацию об отдельных признаках от системы нейронов-детекторов. В гностических нейронах отдельные признаки интегрируются в целостный одномодальный (зрительный или слуховой) образ воспринимаемого объекта. Гностические нейроны, интегрирующие признаки одной сенсорной модальности, составляют 4—5 \% нервных клеток в первичных проекционных зонах и широко представлены во вторичных полях.

Рис. 60. Схема модульной организации нейронов в коре больших полушарий. Слева обозначены слои коры

 

Нейронные сети как структурно-функциональная основа перцепции. В настоящее время широкое признание получило представление о значении нейронных сетей в информационных процессах. Согласно сетевому принципу, формирование нейронных сетей обеспечивает не только анализ поступающих сигналов, но и создает возможность существенно иной качественной обработки информации. Представление о сетевом принципе организации нервной переработки информации было выдвинуто Д.Хеббом, рассматривающем в качестве элементарной интегративной единицы нейронные ансамбли, которые могут расцениваться как локальные нервные сети. Помимо таких локальных сетей существуют и более сложные нейронные сети, которые объединяют различные области коры и обладают выраженными пластичными свойствами. В информационных процессах эти сети объединяют в единую систему проекционные и ассоциативные области коры и являются основой организации целостного процесса восприятия.

Возрастная динамика сенсорных процессов определяется постепенным созреванием различных звеньев анализатора. Рецепторные аппараты созревают еще в пренатальном периоде и к моменту рождения являются наиболее зрелыми. Значительные изменения претерпевают проводящая система и воспринимающий аппарат проекционной зоны, что приводит к изменению параметров реакции на внешний стимул. Следствием усложнения ансамблевой организации нейронов и совершенствования механизмов обработки информации, осуществляемой в проекционной корковой зоне, является усложнение возможностей анализа и обработки стимула, которое наблюдается уже в первые месяцы жизни ребенка. На этом же этапе развития происходит миелинизация афферентных путей. Это приводит к значительному сокращению времени поступления информации к корковым нейронам: латентный (скрытый) период реакции существенно сокращается. Дальнейшие изменения процесса переработки внешних сигналов связаны с формированием сложных нервных сетей, включающих различные корковые зоны и определяющих формирование процесса восприятия как психической функции.

 

Интегративные процессы в центральной нервной системе как основа психических функций

 

Системная организация процесса восприятия. Восприятие как психическая функция не ограничивается обработкой информации в сенсорно-специфическом анализаторе. Являясь активным процессом, восприятие включает ряд когнитивных операций — оценку стимула с точки зрения его значимости, опознание, классификацию и зависит от задачи, стоящей перед субъектом.

В системе восприятия особая роль принадлежит ассоциативным областям коры, которые осуществляют интеграцию признаков разной сенсорной модальности и на этой основе создают целостный образ внешнего мира. В рамках восприятия одной модальности они, благодаря связям с различными подкорковыми структурами и другими областями коры, участвуют в сличении наличной информации со следами в памяти, в оценке значимости в соответствии с ведущей потребностью, в опознании и классификации. Система двусторонних связей ассоциативных областей коры, в особенности лобных отделов, с лимбическими и ретикулярными регуляторными структурами определяет высокую пластичность процесса восприятия и его адекватность текущей ситуации.

Обработка информации в ассоциативных областях коры головного мозга. Нейронная организация ассоциативной коры характеризуется наличием сложных нейронных ансамблей и разветвленной системой межнейрональных связей.

В отличие от мономодальных нейронов проекционных корковых зон нейроны ассоциативных областей характеризуются полимодальными свойствами. На стимулы разных модальностей один и тот же нейрон реагирует определенным рисунком (паттерном) разряда, отражающим его специфические признаки. Показано, что эти нейроны получают сенсорно-специфическую информацию как из подкорковых отделов, так и из проекционных зон коры и имеют неспецифический вход от модулирующей системы мозга. Отличительной особенностью их реакций является их меньшая стабильность и однозначность по сравнению с ответами модальных нейронов проекционных зон. В ассоциативных областях выделяются нейроны с максимальной реакцией на первое воздействие стимула и нейроны с постепенным усилением ответа при повторном действии раздражителя.

В ассоциативной коре (нижневисочная зона) обнаружены также нейроны, избирательно реагирующие на сложные зрительные стимулы, становившиеся значимыми в процессе обучения. Обезьян обучали выбору стимула, идентичного эталону, из большого набора (97 стимулов). В ходе обучения при правильной реакции животного в ряде нейронов в ответ на появление значимого объекта возникали разряды определенной конфигурации, не регистрировавшиеся при предъявлении других стимулов. Таким образом, для нейронов ассоциативной коры характерны следующие особенности: 1) конвергенция стимулов, что необходимо для полного описания и опознания объекта; 2) высокая пластичность, обеспечивающая вовлечение их в реакции в зависимости от конкретных условий; 3) способность реагировать избирательно на сложные объекты, приобретающие определенную значимость.

Отражение системной организации процесса восприятия в структуре и топографии ВП (вызванный потенциал) и ССП (связанный с событиями потенциал). В развитии представлений о процессе восприятия как системе, в которой участвуют проекционные и ассоциативные области коры, большую роль сыграло изучение суммарных биоэлектрических реакций, возникающих в ответ на предъявление сенсорных стимулов, и при решении различных перцептивных задач — ВП и ССП. Вызванные ответы представляют собой последовательность позитивных и негативных колебаний, в которых различают начальные компоненты, непосредственно связанные с анализом и обработкой сенсорной информации (так называемые экзогенные компоненты) и более поздние колебания (эндогенные), отражающие процессы переработки информации разной, степени сложности в зависимости от стоящих перед испытуемым задач. Наиболее сложную структуру имеют ССП.

Более стабильными по своим параметрам являются начальные компоненты; поздние в силу зависимости от многих факторов (внимания, значимости, наличия следовых процессов) отличаются значительной вариабельностью. При использовании метода главных компонент и разностных кривых было показано, что в одном и том же временном интервале могут возникать несколько компонентов, имеющих различное функциональное значение и топографию в коре головного мозга.

Вызванный потенциал, возникающий в интервале до 200 мс, преимущественно выражен в каудальных отделах коры и имеет при осуществлении специфической зрительной функции наибольшую амплитуду в затылочной области.

При предъявлении сложных стимулов и оценке их значимости в составе ССП в интервале от 200 до 400 мс в различных корковых зонах в зависимости от характера стимула и условий его опознания (рис. 61) развиваются разные компоненты — негативная волна, больше выраженная в заднеассоциативных областях и отражающая анализ признаков стимула и его опознание, и позитивные компоненты, связанные с такими когнитивными операциями, как сличение со следом памяти, классификация стимула, принятие решения относительно предъявленной задачи.

Поздний позитивный комплекс преимущественно выражен в переднеассоциативных отделах коры. Показано, что в процессе классификации изображений по ведущему признаку поздний позитивный комплекс имеет максимальную амплитуду в левой лобной области, что указывает на ее специализированную роль в осуществлении этой операции.

Преимущественная выраженность определенных компонентов ССП в той или иной области коры отражает ее специализированное участие в отдельных операциях процесса восприятия. В то же время компоненты ССП с той или иной степенью выраженности могут быть одновременно зарегистрированы во всех корковых зонах. Этому соответствуют данные ПЭТ и ядерно-магнитно-резонансной томографии о широком вовлечении коры головного мозга в процесс восприятия.

Отдельные корковые зоны активно взаимодействуют друг с другом. В экспериментальных исследованиях выявлено взаимовлияние проекционных и ассоциативных отделов коры при осуществлении перцептивных операций.

Таким образом, современные данные подтверждают представление о восприятии как системном процессе, в котором специализированно участвуют и взаимодействуют различные области коры больших полушарий.

 

Рис. 61. ССП разных областей коры головного мозга при предъявлении предметных изображений. Пунктирная линия — ответ на засвет экрана, сплошная — на предметное изображение. Начало ответа совпадает с моментом предъявления стимула

 

Рис. 61. ССП разных областей коры головного мозга при предъявлении предметных изображений. Пунктирная линия — ответ на засвет экрана, сплошная — на предметное изображение. Начало ответа совпадает с моментом предъявления стимула

 

Возрастные особенности системной организации процесса восприятия. Гетерохронное созревание структур мозга, участвующих в реализации этой функции определяет очень существенные качественные преобразования ее мозговой организации в процессе индивидуального развития ребенка. С момента рождения ребенка функционируют проекционные отделы коры. В ответ на зрительные стимулы в этих отделах регистрируются локальные вызванные потенциалы, характеризующиеся относительно простой формой и длительным латентным периодом. Это свидетельствует о возможности осуществления элементарного сенсорного анализа уже в период новорожденное™. Однако, по образному определению И.М.Сеченова, новорожденный «видит, но видеть не умеет». Восприятие, создание образа предмета связано с функцией ассоциативных областей. По мере их созревания они начинают включаться в анализ и обработку поступающей информации. В раннем детском возрасте до 3—4 лет включительно заднеассоциативные зоны дублируют функцию проекционной коры. Их вызванные ответы по форме, временным параметрам, реактивности соответствуют ответам проекционной зоны.

Качественный скачок в формировании системы восприятия отмечен после 5 лет. К 6—7 годам заднеассоциативные зоны специализированно вовлекаются в процесс опознания сложных изображений, а в проекционной коре осуществляется более простой анализ, например выделение контура и контраста. На этом этапе развития существенно облегчается опознание сложных, ранее незнакомых предметов, сличение их с эталоном.

В школьном возрасте система зрительного восприятия продолжает усложняться и совершенствоваться за счет переднеассоциативных областей. Эти области, ответственные за принятие решения, оценку значимости поступающей информации и организацию адекватного реагирования, обеспечивают формирование произвольного избирательного восприятия. Существенные изменения избирательного реагирования с учетом значимости стимула отмечены к 10—11 годам. Недостаточная сформированость этого процесса в 7—8 лет обусловливает затруднение в выделении основной значимой информации и отвлечение на несущественные детали. Продолжительность созревания нейронного аппарата переднеассоциативных областей коры в онтогенезе определяет совершенствование процесса восприятия на протяжении всего восходящего периода развития, включая подростковый.

Нейрофизиологические механизмы внимания

 

Внимание — одна из важнейших психологических функций. Оно — обязательное условие результативности любой деятельности, будь то восприятие реальных предметов и явлений, выработка двигательного навыка или операции с числами, словами, образами, совершаемые в уме.

Выделяются два типа внимания — произвольное (активное), направленное на сознательно выбранную цель, и непроизвольное (пассивное), возникающее при неожиданных изменениях во внешней среде — новизне, неопределенности.

Структурно-функциональная организация внимания. Непроизвольное внимание по механизму близко к ориентировочной реакции, оно возникает на новое или неожиданное предъявление стимула. Начальная ситуация неопределенности требует мобилизационной готовности коры больших полушарий, и основным механизмом, запускающим непроизвольное внимание, является вовлечение в этот процесс ретикулярной модулирующей системы мозга (см. рис. 55). Ретикулярная формация по восходящим связям вызывает генерализованную активацию коры больших полушарий, а структуры лимбического комплекса, оценивающие новизну поступающей информации, по мере повторения сигнала опосредуют либо угасание реакции, либо ее переход к вниманию, направленному на восприятие или организацию деятельности.

Произвольное внимание в зависимости от конкретных задач, потребностей, мотивации облегчает, «оптимизирует» все этапы осуществления познавательной деятельности: начальный — ввод информации, основной центральный — ее анализ и оценку значимости и конечный результат — фиксацию нового знания в индивидуальном опыте, поведенческую реакцию, необходимые двигательные действия.

На этапе ввода и первичного анализа стимула, его выделения в пространстве важная роль принадлежит двигательным компонентам внимания — глазным движениям. Процессы, происходящие на уровне среднего мозга (четверохолмие), обеспечивают саккадические движения глаз, помещающие объект в область наилучшего видения на сетчатке. Реализация этого механизма происходит при участии заднеассоциативной теменной коры, которая получает разномодальную информацию от сенсорных зон (информационная составляющая) и от коркового отдела лимбической системы (мотивационная составляющая). Формирующиеся на этой основе нисходящие влияния коры управляют структурами среднего мозга и оптимизируют начальный этап восприятия.

Обработка информации о стимуле, представляющем определенную значимость для организма, требует поддержания внимания и регуляции активационных влияний. Управляющий эффект (локальная активация) достигается регулирующими влияниями лобной коры. Реализация локальных активирующих влияний осуществляется через ассоциативные ядра таламуса. Это так называемая фронто-таламическая система внимания. В механизмах локальной активации значительная роль принадлежит также структурам лимбической системы (гиппокамп, гипоталамус, миндалина, лимбическая кора) и их связям с лобным неокортексом (см. рис. 56).

Активация исполнительных механизмов, включающих моторные программы и программы врожденного и приобретенного поведения, осуществляется с участием лобных отделов и базальных ганглиев, находящихся под двойным контролем — коры и лимбического мозга.

Таким образом, произвольное селективное внимание обеспечивается целыми комплексами иерархически организованных структур. В результате активирующие влияния становятся опосредованными результатами анализа ситуации и оценки значимости, что способствует формированию системы активированных мозговых центров, адекватной условиям выполняемой задачи.

ЭЭГ-анализ мозговой организации внимания. В ЭЭГ при генерализованной тонической активации в ответ на предъявление нового стимула, вызвавшего непроизвольное внимание, возникает десинхронизация основного ритма (рис. 62) — блокада среднечастотного альфа-компонента, доминирующего в состоянии покоя, и усиление представленности высокочастотных колебаний альфа-диапазона, бета- и гамма-активности.

 

 

Рис. 62. Блокада альфа-ритма — реакция десинхронизации в коре

больших полушарий при первом предъявлении нового стимула —

тона (отмечено на верхней линии). Отведения обозначены слева от

кривых (здесь и на последующих рисунках нечетные цифры — левое,

четные — правое полушарие). КГР — кожно-гальваническая реакция

 

Значимость функциональных объединений структур при селективном внимании была продемонстрирована при изучении мозговой организации направленного модально специфического внимания в ситуации ожидания определенной перцептивной задачи. Информация о модальности стимула, подвергающегося бинарной классификации, которую заранее получал испытуемый, приводила к формированию в коре левого полушария функциональных объединений на частоте альфа-ритма в период, непосредственно предшествующий перцептивной деятельности, с центром интеграции в области корковой проекционной зоны соответствующей модальности — в височной зоне при ожидании слуховой задачи, в сенсомоторной корковой зоне при тактильной, в затылочной при зрительной. Существенно, что именно такая организация предстимульного внимания способствовала правильному решению задачи (рис. 63). Активность правого полушария в этой ситуации не связана с обеспечением правильного ответа при ожидании задачи.

Возрастные особенности структурно-функциональной организации внимания. Признаки непроизвольного внимания обнаруживаются уже в период новорожденности в виде элементарной ориентировочной реакции на экстренное применение раздражителя. Эта реакция еще лишена характерного исследовательского компонента, но она уже проявляется в определенных изменениях электрической активности мозга, вегетативных реакциях (изменение дыхания, частоты сердцебиения).

В 2—3-месячном возрасте ориентировочная реакция приобретает черты исследовательского характера. В грудном, так же как и в начале дошкольного возраста, корковая генерализованная активация представлена не блокадой альфа-ритма, а усилением тета-ритма, отражающего повышенную активность лимбических структур, связанных с эмоциями. Особенности активационных процессов определяют специфику произвольного внимания в этом возрасте: внимание маленького ребенка привлекают в основном эмоциональные раздражители. По мере созревания системы восприятия речи формируется социальная форма внимания, опосредованная речевой инструкцией. Однако вплоть до 5-летнего возраста эта форма внимания легко оттесняется непроизвольным вниманием, возникающим в ответ на новые привлекательные раздражители.

 

РОСТ КОГЕРЕНТНОСТИ АЛЬФА-КОЛЕБАНИЙ В СИТУАЦИИ ПРЕДСТИМУЛЬНОГО ВНИМАНИЯ

 

 

Рис. 63. Специфика функциональной организации структур левого и правого полушарий в ситуации предстимульного селективного внимания. На схемах обозначены отведения. Линиями соединены области коры, в активности которых наблюдается достоверный рост значений Ког альфа-ритма перед правильным ответом по сравнению с неправильным. ЛП — левое, ПП — правое полушарие

 

Существенные изменения корковой активации, лежащей в основе внимания, отмечены в 6—7-летнем возрасте. Обнаруживается зрелая форма корковой активации в виде генерализованной блокады альфа-ритма. Существенно возрастает роль речевой инструкции в формировании произвольного внимания. Вместе с тем в этом возрасте еще велико значение эмоционального фактора.

Качественные сдвиги в формировании нейрофизиологических механизмов произвольного внимания связаны со структурно-функциональным созреванием лобных отделов коры, обеспечивающих организацию процессов локальной регулируемой активации в соответствии с принятием решения на основе проанализированной информации, мотивации или словесной инструкции. В результате этого в деятельность избирательно включаются определенные структуры мозга, активность других затормаживается, и создаются условия для наиболее экономичного и адаптивного реагирования.

Важнейшим этапом в организации произвольного внимания является младший школьный возраст. В 7—8 лет недостаточная зрелость фронтально-таламической системы регуляции активационных процессов определяет большую степень их генерализации и менее выраженную избирательность объединения корковых зон в рабочие функциональные констелляции в ситуации предстимульного внимания, предваряющего конкретно реализуемую деятельность. К 9—10 годам механизмы произвольной регуляции совершенствуются: активационные процессы становятся более управляемыми, определяя улучшение показателей организации деятельности.

 

Роль различных структур головного мозга в потребностно-эмоциональной сфере

 

Потребности и мотивации. Потребности являются внутренним источником активного взаимодействия организма с внешней средой и рассматриваются как основная детерминанта поведения, направленного на достижение определенной цели. И.П.Павлов ввел понятие «рефлекса цели» как выражения стремления живого организма к обладанию чем-либо — пищей, различными предметами. Сфера потребностей человека очень широка. Она включает как биологические, так и социальные и духовные потребности.

Биологические потребности связаны с активностью нервных центров гипоталамуса. В экспериментах на животных с электродами, вживленными в различные ядра гипоталамуса, было отмечено, что у голодного животного резко возрастала электрическая активность определенных участков гипоталамуса. При насыщении усиление электрической активности этих структур прекращалось. Их раздражение вызывало пищевое поисковое поведение. При раздражении других ядер наблюдались отказ от пищи, половое возбуждение, агрессивно-оборонительное поведение.

Биологические потребности человека отличаются от животных. Их реализация не носит непосредственного характера и в значительной мере определяется социальными и культурными факторами. Это свидетельствует о том, что даже биологические потребности у человека находятся под контролем регулирующих структур коры больших полушарий. Актуализируемая, наиболее значимая на данный момент потребность, приобретающая все свойства доминанты, называется мотивацией. По теории доминанты А.А.Ухтомского, она подчиняет себе деятельность организма, обеспечивая приоритетность данного поведенческого акта и подавляя другие виды деятельности.

Эксперименты с созданием искусственной доминанты показали, что на ее фоне повышаются чувствительность нейронных систем в структурах, охваченных доминантным состоянием, скорость протекающих в них процессов и конвергентные способности. Мотивация выступает как пусковой механизм формирования функциональной системы, активизируя структуры, включающиеся в афферентный синтез, принятие решения, выработку программы и ее коррекцию на основе результатов действия.

Мотивация реализуется при непосредственном участии гипоталамуса и других отделов лимбической системы, где наряду с основными центрами, связанными с биологическими потребностями, расположены структуры, участвующие в оценке и регуляции этапов поведения, направленных на удовлетворение потребности. В общую многоуровневую систему реализации мотивации вовлекается и кора больших полушарий, организующая активное поисковое поведение.

Эмоции, их физиологическая основа. В тесной связи с мотивационно-потребностной сферой находятся эмоции. Эмоции рассматриваются как психический процесс, активно включающийся в модуляцию функционального состояния мозга и организацию поведения, направленного на удовлетворение актуальных потребностей. При этом эмоции отражают субъективное отношение к внешнему миру, окружающим людям, самому себе, собственной деятельности и ее результату.

Мозговая организация эмоций исследовалась в экспериментах на животных с разрушением и раздражением различных подкорковых структур, а также в клинике локальных поражений мозга у человека. Наиболее яркие эффекты были получены при раздражении определенных ядер гипоталамуса, вызывавшем эмоциональные реакции разного знака. Стимуляция зон латерального гипоталамуса приводила к стремлению животных (крыс) к продлению этого состояния путем самораздражения. Раздражение других центров гипоталамуса вызывало реакцию избегания. Области мозга, раздражение которых вело к подкреплению и избеганию, получили название центров удовольствия и неудовольствия соответственно с позитивной и негативной эмоциональной окраской. Эмоциональные реакции разного знака были получены и при раздражении других отделов лимбической системы.

Как было сказано выше, лимбические структуры входят в состав модулирующей системы мозга, и это определяет важную роль эмоций в регуляции активационных процессов — генерализованной и локальной активации, а следовательно, и в организации поведенческих реакций.

Мозговая организация эмоций, как и других психических функций, многоуровневая. Лимбическая система обладает связями с ассоциативными областями неокортекса.

В клинических исследованиях выявилась специфическая роль лобной и височной коры в проявлении эмоций. При разных типах поражения лобных долей отмечались глубокие нарушения эмоциональной сферы, затрагивающие в основном высшие эмоции, связанные с социальными отношениями, произвольной деятельностью, творчеством. Наблюдалось растормаживание влечений, неустойчивость эмоционального фона от депрессии до эйфории.

При височных поражениях, особенно справа, нарушается опознание эмоциональной интонации речи.

Выявлена неодинаковая роль ассоциативных отделов в эмоциональном регулировании. Так, показано, что при правосторонних поражениях возникает состояние эйфории и беспечности. Левосторонние поражения приводят к преобладанию озабоченности и тревожности: больные беспокойны и часто плачут.

На основании этих данных возникло представление о преимущественной связи правого полушария с отрицательным эмоциональным фоном, а левого полушария — с положительным.

Возрастные особенности потребностно-эмоционалъной сферы ребенка. У детей уже с первых месяцев жизни очень велика потребность в новизне. Удовлетворение потребностей в новизне вызывает положительные эмоции, и те, в свою очередь, стимулируют деятельность ЦНС. Согласно представлению П.В.Симонова, эмоция, компенсируя недостаток сведений, необходимых для достижения цели, обеспечивает продолжение действий, способствует поиску новой информации и тем самым повышает надежность живой системы.

Эмоции детей из-за слабости контроля со стороны высших отделов ЦНС неустойчивы, их внешние проявления несдержанны. Ребенок легко и быстро плачет и так же быстро от плача может перейти к смеху. От радости ребенок громко смеется, кричит, машет руками. С возрастом, по мере созревания коры больших полушарий и усиления ее влияний на нижележащие подкорковые структуры, сдержанность эмоциональных проявлений возрастает. Тесная связь эмоций с потребностями определяет необходимость учета возрастных особенностей эмоциональной сферы ребенка в процессе воспитания. Воспитание способно существенно влиять даже на биологические, врожденные потребности, изменять степень и формы их проявления. Еще более велика роль воспитания в формировании социально обусловленных, в том числе познавательных, потребностей. Расширение сферы потребности с помощью целенаправленных воспитательных мероприятий, тесно связанных с эмоциями на этапе развития, который характеризуется повышенной эмоциональной активацией, будет способствовать расширению диапазона внешних воздействий, привлекающих внимание, и тем самым приведет к совершенствованию познавательных процессов и целенаправленной деятельности ребенка.

Созревание высших отделов ЦНС в младшем школьном возрасте расширяет возможность формирования познавательных потребностей и способствует совершенствованию регуляции эмоций.

 

Нейрофизиологические механизмы памяти

 

Важнейшим свойством нервной системы является способность накапливать, хранить и воспроизводить поступающую информацию. На основе временной последовательности осуществляемых операций и длительности хранения следов различных событий выделяют сенсорную (перцептивную), кратковременную и долговременную память. Сенсорная память представляет собой след возбуждения в сенсорной системе от непосредственно действующего стимула и служит первичному анализу и дальнейшей обработке сенсорной информации. Ее особенностью является значительная емкость, до 20 элементов (бит). Длительность сохранения следов в перцептивной памяти не превышает 1 с. Воспроизведение следов в системе нейронных сетей (циркуляция возбуждений) обеспечивает кратковременное хранение информации уже ограниченной емкости (7±2 бита) — кратковременную память. Предполагается, что за время реверберации импульсов по замкнутым нейронным контурам, которое может продолжаться от нескольких секунд до нескольких минут, происходит перевод импульсного кода в структурные изменения в синаптическом аппарате и в теле нейрона.

Долговременная память — это неопределенно долгое хранение информации, составляющей индивидуальный опыт. Долговременная память базируется на определенной фиксированной структуре биохимических и молекулярных изменений в нейронах, что обеспечивает ее устойчивость и длительность хранения информации.

Выделение различных видов памяти на основе временного параметра относительно. На самом деле процессы памяти более сложно развертываются во времени и взаимодействуют в процессе реальной деятельности. В процессе восприятия или организации целенаправленного акта как кратковременная, так и долговременная память могут перейти в активное состояние, так называемую рабочую память.

Рабочая, или оперативная, память — это актуализированная система следовых процессов, активно использующихся во время организации и выполнения различных видов деятельности и целенаправленного поведения. Рабочая память представляет собой один из компонентов афферентного синтеза в функциональной системе. Извлеченные следы взаимодействуют с обстановочной и пусковой афферентацией для принятия решения и формирования программы действий.

Структурно-функциональная организация памяти. Память обеспечивается функционированием многоуровневой системы мозговых структур. В нее включаются сенсорные корковые зоны, где формируется первичный след сенсорной информации, ассоциативные области, где синтезируется материал для образной и словесно-логической памяти.

В процессе перевода информации из кратковременной памяти в долговременное хранение участвует гиппокамп. При его поражении теряется память о текущих событиях, долговременная память при этом сохраняется. Это так называемый синдром Корсакова.

В формировании эмоциональной памяти ведущая роль принадлежит миндалине, которая обеспечивает быстрое и прочное запечатление эмоционально значимых событий даже после их одноразового появления.

Гиппокамп и миндалина тесно связаны с височной корой, которая рассматривается как «хранилище» долговременной памяти.

В отборе информации для хранения и в актуализации следов (перевода их в рабочую память), необходимых для организации целенаправленного поведения, ведущая роль принадлежит лобным отделам коры, имеющим двусторонние связи со структурами лимбической и ретикулярной системы.

Лобные отделы как высшее звено неспецифической активирующей системы участвуют на основе оценки значимости информации в создании оптимального уровня активации для фиксации следов и их воспроизведения.

Молекулярные механизмы памяти. Началом представления о специфических носителях памяти послужили исследования X. Хидена, показавшего, что образование следов памяти сопровождается изменением структуры РНК с последующим образованием новых белков. В дальнейшем было показано, что РНК участвует в передаче специфического кода, а в качестве хранилища информации выступает ДНК.

Исследование молекулярных механизмов памяти рассматривается как перспективное направление. Однако в основе долговременной памяти лежат не только преобразования на уровне отдельных клеток, но и на системном уровне. Эти преобразования обеспечиваются медиаторными системами мозга, объединяющими разные структуры, участвующие в операциях запечатления и воспроизведения следовых процессов, в распределенную динамическую систему памяти.

Возрастная динамика памяти. Механизмы памяти претерпевают значительные изменения с возрастом. Память, основанная на простом запечатлевании следа, — сенсорная память — осуществляется на ранних этапах развития. По мере развития сенсорных систем и усложнения процесса восприятия формируется образная память. На ранних этапах развития формируется также память в основе которой лежит механизм выработки условного рефлекса. Этот вид памяти является базовым в формировании навыка, простых форм памяти. Относительная простота системы памяти в детском возрасте определяет устойчивость и прочность запоминания в раннем детстве. По мере структурно-функционального созревания коры больших полушарий, развития речевой функции формируется свойственная человеку словесно-логическая память. Человек способен запоминать не только и не столько подробности информации, сколько общие положения. Так, в прочитанном тексте взрослый человек запоминает не словесную формулировку, а содержание. Созревание высших корковых формаций с возрастом определяет длительность и постепенность развития и совершенствования этого вида памяти.

 

Речь и ее мозговая организация

 

Речь — специфически человеческая функция, возникшая в процессе эволюции. Для ее обозначения и подчеркивания различий физиологических механизмов речи как формы общения с внешним миром от имеющихся у животных И. П. Павлов ввел понятие второй сигнальной системы, в то время как у животных имеется только первая сигнальная система восприятия непосредственных признаков внешних стимулов. Слово, хотя тоже является стимулом, воспринимается через сенсорные системы и может обозначать предмет, отличается тем, что в нем отражаются наиболее существенные свойства внешних объектов. Оно обеспечивает возможность обобщенного и отвлеченного отражения действительности.

Выделяются коммуникативная, регулирующая и программирующая функции речи. Речь обеспечивает общение между людьми, служит для обмена информацией и побуждения к действию. Посредством слов человек познает предметы и явления внешнего мира без непосредственного контакта с ними, устанавливает связи и отношения. Речь является основой процесса мышления. Среда, в которой развивается ребенок, определяет формирование родного языка. У человека имеются генетические предпосылки языкового общения, они заложены в структуре мозга и артикуляционного речевого аппарата.

Регулирующая функция речи проявляется в сознательных формах психической деятельности. Речи принадлежит важная роль в развитии произвольного волевого поведения. От внешней регуляции поведения, обеспечиваемой коммуникативной функцией речи, ребенок в процессе развития приобретает возможность преобразовывать внешние речевые сигналы — приказы — во внутреннюю речь (процесс интериоризации). С помощью внутренней речи человек сам может регулировать свое поведение.

Программирующая функция речи состоит в формулировании программ различных действий и поведения на основе внутренней речи. В собственно речевой (вербальной) деятельности это проявляется в программировании и грамматическом построении развернутого речевого высказывания.

Системная организация речевой деятельности. Выделение центров речи привело к представлению об узком локальном представительстве речевой функции. Вербальную деятельность представляли как взаимосвязь центров восприятия речи (Вернике) и ее воспроизводства (Брока) и локализовали у правшей исключительно в левом полушарии (рис. 64).

Важный вклад в понимание функциональной организации структур мозга при осуществлении речевой функции внесли нейропсихологические исследования А. Р. Лурия. Было показано, что при различных по локализации мозговых поражениях нарушается сложная структура речевой деятельности. Характер нарушений зависит от того, какая структура мозга повреждена.

Существенную роль в восприятии слышимой речи играют вторичные отделы слуховой коры левого полушария, которые воспринимают элементарные коды слов — фонемы. Например: люк, лак, лук или бар — пар. Различение фонем (фонематический слух) страдает при поражении этих структур, понимание точного значения слов становится невозможным. Фонемы — это звуки речи, замещение которых изменяет смысл слова и отвечает за специфический для вербальной функции фонематический слух. Нарушения в этой области делают невозможным понимание точного и конкретного значения слов. Такую же роль в зрительном восприятии слов играют вторичные зрительные зоны.

Понимание смысла слов, особенно в зависимости от контекста (в предложении), и целостного речевого высказывания (семантический анализ) страдает при поражении глубоких отделов левой височной доли, ответственной за слухо-речевую память, и заднеассоциативных областей, включая центр Вернике, где элементы речевой структуры интегрируются в смысловую схему.

 

 

Рис. 64. Центры речи (области Вернике и Брока) в левом полушарии

(А) и на горизонтальном срезе мозга (Б). Мт — мозолистое тело; ДП —

диагональный пучок, связывающий речевые центры

 

При сохранности этих структур и нарушении лобных отделов, с которыми связаны программирование действий, активный поиск информации, анализ наиболее существенных элементов содержания сложных развернутых высказываний, их понимание становится невозможным.

Сложноорганизованной является и система называния предметов и устной речи. Непосредственно реализация устной речи происходит с участием нижних отделов премоторной области левого полушария, где локализован центр Брока. Нарушения в этой области приводят к застреванию на каком-нибудь слоге, перестановке букв, многократном повторении предыдущей артикуляции. Вместе с тем реализация устной речи происходит с участием других структур мозга.

Так, называние предмета требует перекодировки зрительного образа в его звуковой эквивалент. Эта операция связана с теменно-затылочными отделами мозга. Другим важным условием адекватного называния предмета является сохранность акустической структуры слова, что является функцией левой височной области. Нарушение называния может быть связано и с более сложными мозговыми процессами: необходимость единственно правильного называния предмета требует торможения всех побочных альтернатив, что включает лобную кору, управляющую всей активирующей системой мозга.

Роль лобной коры особенно велика в воплощении замысла и намерения речевого высказывания в устную словесную форму. При лобном синдроме (повреждение лобных областей) отсутствует самостоятельно возникающее высказывание (речевая инициатива). Больные в диалоге ограничиваются пассивными и односложными повторениями.

В последнее время была выявлена важная роль в речевых процессах так называемой дополнительной моторной области, расположенной кпереди от центральной (Роландовой) борозды (см. рис. 64) и являющейся частью лобных долей мозга. У больных с поражением этой области нарушается ритм речи, интонация. Существенно страдает грамматический порядок слов — больные пропускают союзы, местоимения, затрудняются в использовании глаголов. Эти нарушения затрагивают как произносимую, так и слышимую речь.

Необходимо подчеркнуть, что, несмотря на то что основные речевые центры расположены в левом полушарии, правое тоже вовлекается в речевую функцию.

При поражении правого полушария страдают интонационные компоненты речи, нелингвистические компоненты речи — интонация, параметры основного тона (высота, громкость), эмоциональная окраска. Структуры, управляющие голосовыми реакциями, тесно связаны на разных уровнях с лимбической системой мозга, что и привносит в звучащую речь эмоциональный компонент. Правое полушарие ответственно и за зрительно-пространственный анализ вербального материала.

Важные сведения о мозговой организации речевых процессов были получены и с помощью ЭЭГ-анализа, и компьютерной томографии (см. рис. 53). Как показали результаты ЭЭГ-анализа, при вербальных операциях (составление слов из букв) усиливается степень взаимодействия областей левого полушария, участвующих в речевой деятельности. В правом полушарии отмечается взаимодействие лобной и затылочной области; вовлечение зрительной проекционной зоны связано со зрительным предъявлением букв.

Следует подчеркнуть специфику ритмического компонента, образующего функциональные объединения в левом и правом полушариях: в левом взаимодействие областей осуществляется по высокочастотному компоненту альфа-ритма, в правом — по низкочастотному.

О вовлечении структур правого и левого полушария в вербальную деятельность свидетельствует и избирательное усиление метаболизма в определенных корковых зонах, обнаруживаемое в томографических исследованиях.

Показано участие в речевой деятельности глубинных структур мозга. При исследовании нейронной активности таламуса у человека обнаружены нейроны, изменяющие конфигурацию и частоту разряда при предъявлении речевых стимулов. Поражение таламических структур приводит к нарушению разных аспектов речевой деятельности.

Развитие механизмов речи. Речь формируется в течение первых лет жизни ребенка. Уже с момента рождения начинают формироваться системы, ответственные за восприятие звуков речи и артикуляционные механизмы. С момента рождения ребенок воспринимает фонемы. Показано, что ВП„ регистрируемые при восприятии фонем, отличаются от таковых на тоны и звуковые щелчки. Первые звуки, издаваемые ребенком, — гуление — не несут еще языковой специфичности, однако уже на 1-м году лепет различен у детей, развивающихся в разной языковой среде. На основе формирования сенсорных систем, и прежде всего зрительной, формируется назывательная (номинативная) функция речи — ребенок ассоциирует предметы и их названия. Для развития речевой функции важнейшее значение имеет речевой контакт — коммуникативная функция речи. По мере развития высших отделов мозга, ответственных за произвольную регуляцию деятельности, формируются регулирующая и программирующая функции речи. Целостная вербальная деятельность, ее абстрактно-логические и графические формы (чтение и письмо) развиваются и совершенствуются в течение длительного периода развития ребенка, охватывающего весь процесс обучения в школе.

 

Вопросы и задания

1. В чем состоит принцип системной организации деятельности мозга?

2. Охарактеризуйте сущность учения И. П. Павлова о высшей нервной деятельности.

3. В чем заключается принцип доминанты А.А.Ухтомского?

4. Опишите основные блоки функциональной системы по П.К. Анохину.

5. Охарактеризуйте многоуровневую систему приема и обработки сенсорной информации.

6. Как осуществляется кодирование информации и ее обработка?

7. Опишите возрастные особенности процесса восприятия информации и укажите, чем они определяются?

8. Охарактеризуйте нейрофизиологические механизмы внимания и их возрастные особенности.

9. Какие отделы мозга являются структурно-функциональной основой эмоций и потребностей?

10. Охарактеризуйте механизмы памяти и их возрастные изменения.

11. Опишите мозговую организацию речи и формирование речевых функций в процессе развития ребенка.

Страница: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |