Имя материала: Математические методы в экономике

Автор: Замков Олег Олегович

Глава 13 введение в математическую теорию игр 13.1. основные понятия теории игр

В лекциях по теории оптимизации рассматривались такие задачи принятия решений, когда выбор решения осуществлялся одним лицом. В подобных задачах рационального ведения хозяйства решение выбирается при предположении о том, что известны целевая функция,различные способы действия и офаничения. В данной главе рассматриваются задачи принятия решений в ситуациях с несколькими участниками, когда значение целевой функции для каждого из субъектов зависит и от решений, принимаемых всеми остальными участниками. Предметом теории иф являются такие ситуации, в которых важную роль ифают конфликты и совместные действия.

Одна из характерных черт всякого общественного, социально -экономического явления состоит в множественности, многосторонности интересов и в наличии сторон, выражающих эти интересы. Классическими примерами здесь являются ситуации, где, с одной стороны, имеется один покупатель, с другой - продавец (ситуация монополия-монопсония), когда на рынок выходят несколько производителей, обладающих достаточной силой для воздействия на цену товара (ситуация олигополии, в том числе дуополии, если число таких участников равно двум). Более сложные ситуации подобного рода возникают, если имеются объединения или коалиции лиц, участвующих в столкновении интересов, например, в том случае, когда ставки заработной платы определяются союзами или объединениями рабочих и предпринимателей, при анализе результатов голосования в парламенте и т.п.

Конфликт может возникнуть также из различия целей, которые отражают не только несовпадающие интересы различных сторон, но и многосторонние интересы одного и того же лица. Например, разработчик экономической политики обычно преследует разнообразные цели, согласуя противоречивые требования, предъявляемые к ситуации (рост объемов производства, повышение доходов, снижение экологической нагрузки и т.п.). Конфликт может проявляться не только в результате сознательных действий различных участников, но и как результат действия тех или иных "стихийных сил" (случай так называемых "иф с природой"). Множество подобных примеров можно встретить в биологии, социологии, психологии, политологии, военном деле и т.д.

И наконец, примерами игр являются обычные игры: салонные, спортивные, карточные и др. Именно с анализа подобных игр начиналась математическая теория игр; они и по сей день служат прекрасным материалом для иллюстрации положений и выводов этой теории.

В итоге, всякая претендующая на адекватность математическая модель социально-экономического явления должна отражать присущие ему черты конфликта, т.е. описывать:

а)         множество заинтересованных сторон (мы будем называть их

игроками; в литературе по теории игр они именуются также субъек-

тами, лицами, сторонами, участниками). В случае, если число игро-

ков конечно, они различаются по своим номерам (1-й игрок и 2-й

игрок в игре в орлянку или в случае дуополии) или по присваивае-

мым им именам (например, Продавец и Покупатель в ситуации

монополия-монопсон ия);

б)         возможные действия каждой из сторон, именуемые также стра-

тегиями или ходами;

в)         интересы сторон, представленные функциями выигрыша (пла-

тежа) для каждого из игроков.

В теории игр предполагается, что функции выигрыша и множество стратегий, доступных каждому из игроков, общеизвестны, т.е. каждый игрок знает свою функцию выигрыша и набор имеющихся в его распоряжении стратегий, а также функции выигрыша и стратегии всех остальных игроков, и в соответствии с этой информацией организует свое поведение.

Формализация содержательного описания конфликта представляет собой его математическую модель, которую называют игрой.

Теория игр впервые была систематически изложена Дж.фон Нейманом и О.Монгерштерном в 1944 г., хотя отдельные результаты были опубликованы еще в 20-х годах. Нейман и Моргенштерн написали оригинальную книгу, которая содержала главным образом экономические примеры, поскольку экономическому конфликту легче всего придать численную форму. Во время второй мировой войны и сразу после нее теорией игр серьезно заинтересовались военные, которые увидели в ней аппарат для исследования стратегических решений.Затем главное внимание снова стало уделяться экономическим проблемам. Сейчас ведется большая работа, направленная на расширение сферы применения теории игр.

Страница: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 |