Имя материала: Моделирование рисковых ситуаций

Автор: И.А. Киселева

4.1. понятие игры с природой

Ситуации, описываемые рассмотренными в гл. 3 моделями в виде стратегических игр, в экономической практике могут не в полной мере оказаться адекватными действительности, поскольку реализация модели предполагает многократность повторения действий (решений), предпринимаемых в похожих условиях. В реальности количество принимаемых экономических решений в неизменных условиях жестко ограничено. Нередко экономическая ситуация является уникальной, и решение в условиях неопределенности должно приниматься однократно. Это порождает необходимость развития методов моделирования принятия решений в условиях неопределенности и риска.

Традиционно следующим этапом такого развития являются так называемые игры с природой. Формально изучение игр с природой, так же как и стратегических, должно начинаться с построения платежной матрицы, что является, по существу, наиболее трудоемким этапом подготовки принятия решения. Ошибки в платежной матрице не могут быть компенсированы никакими вычислительными методами и приведут к неверному итоговому результату.

Отличительная особенность игры с природой состоит в том, что в ней сознательно действует только один из участников, в большинстве случаев называемый игроком 1. Игрок 2 (природа) сознательно против игрока 1 не действует, а выступает как не имеющий конкретной цели и случайным образом выбирающий очередные «ходы» партнер по игре. Поэтому термин «природа» характеризует некую объективную действительность, которую не следует понимать буквально, хотя вполне могут встретиться ситуации, в которых «игроком» 2 действительно может быть природа (например, обстоятельства, связанные с погодными условиями или с природными стихийными силами).

На примере игры с природой рассмотрим проблему заготовки угля на зиму.

 

Задача 1. Необходимо закупить уголь для обогрева дома. Количество хранимого угля ограничено и в течение холодного периода должно быть полностью израсходовано. Предполагается, что неизрасходованный зимой уголь в лето пропадает. Покупать уголь можно в любое время, однако летом он дешевле, чем зимой. Неопределенность состоит в том, что не известно, какой будет зима: суровой (тогда придется докупать уголь) или мягкой (тогда часть угля может остаться неиспользованной). Очевидно, что у природы нет злого умысла и она ничего против человека «не имеет». С другой стороны, долгосрочные прогнозы, составляемые метеорологическими службами, неточны и поэтому могут использоваться в практической деятельности только как ориентировочные при принятии решений.

Матрица игры с природой аналогична матрице стратегической игры: A -

где atj - выигрыш игрока 1 при реализации его чистой стратегии i и чистой стратегии j

игрока 2 (i = 1,m; j = 1,    n).

Мажорирование стратегий в игре с природой имеет определенную специфику: исключать из рассмотрения можно лишь доминируемые стратегии игрока 1: если для всех j=1,     n   akj < ajj, k, l = 1,..., m, то k-ю стратегию принимающего решения игрока 1

можно не рассматривать и вычеркнуть из матрицы игры. Столбцы, отвечающие стратегиям природы, вычеркивать из матрицы игры (исключать из рассмотрения) недопустимо, поскольку природа не стремится к выигрышу в «игре» с человеком, для нее нет целенаправленно выигрышных или проигрышных стратегий, она действует неосознанно.*

На первый взгляд, отсутствие обдуманного противодействия упрощает игроку задачу выбора решения. Однако, хотя ЛПР никто не мешает, ему труднее обосновать свой выбор, поскольку в этом случае гарантированный результат не известен.

Методы принятия решений в играх с природой зависят от характера неопределенности, точнее от того, известны или нет вероятности состояний (стратегий) природы, т.е. имеет ли место ситуация риска или неопределенности. Ниже будут описаны методы, применяемые в обоих случаях.

Рассмотрим организацию и аналитическое представление игры с природой. Пусть игрок 1 имеет m возможных стратегий: Аг,Аг, Am, а у природы имеется n возможных состояний (стратегий): Пі,ГІ2, Пп, тогда условия игры с природой задаются матрицей А выигрышей игрока 1:

A

 

1n l2n

... a

 

Платит, естественно, не природа, а некая третья сторона (или совокупность сторон, влияющих на принятие решений игроком 1 и объединенных в понятие «природа»).

Возможен и другой способ задания матрицы игры с природой: не в виде матрицы

її її

выигрышей, а в виде так называемой матрицы рисков R -

или матрицы упущен-

m,n

ных возможностей. Величина риска - это размер платы за отсутствие информации о состоянии среды. Матрица R может быть построена непосредственно из условий задачи или на основе матрицы выигрышей А.

Риском Tij игрока при использовании им стратегии Аі и при состоянии среды П будем называть разность между выигрышем, который игрок получил бы, если бы он знал, что состоянием среды будет П, и выигрышем, который игрок получит, не имея этой информации.

Зная состояние природы (стратегию)     игрок выбирает ту стратегию, при кото-

Подпись: где в j = max aij при заданном j. Напри-



(97)
рой его выигрыш максимальный, т.е. Tij мер, для матрицы выигрышей

в1 = 4, в2 = 8, в3 = 6, в4 = 9,

Согласно введенным определениям rj и в у получаем матрицу рисков

П л П 2 П 3

П 4 >

А,

R ■

А2 Аз

3 4 10 10 2 6 0    2    0 7

Независимо от вида матрицы игры требуется выбрать такую стратегию игрока (чистую или смешанную, если последняя имеет смысл), которая была бы наиболее выгодной по сравнению с другими. Необходимо отметить, что в игре с природой понятие смешанной стратегии игрока не всегда правомерно, поскольку его действия могут быть альтернативными, т.е. выбор одной из стратегий отвергает все другие стратегии (например, выбор альтернативных проектов).

Вначале следует проверить, нет ли среди стратегий игрока мажорируемых, и, если таковые имеются, исключить их.

 

Страница: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |