Имя материала: Справочник по математике для экономистов

Автор: В.И. Ермаков

16.5. системы массового обслуживания с ограниченной длиной очереди

 

Граф состояний многоканальной системы массового обслуживания, имеющей да каналов, с ограниченной очередью, число мест в которой ограничено величиной /, при принятых допущениях (см. п. 16.3) имеет вид, изображенный на рис. 16.2.

 

 

 

 

 

 

So

 

 

 

 

 

 

 

та

 

та

 

ті

Рис. 16.2

В системе с ограниченной длиной очереди вероятности состояний

Sv S2,Sm находят по формулам

Р,=^Ро  0 = 1,2,..., да), а вероятности состояний S    S ~,S  , — с помощью формул

Pt=   ,   ,_яРо  (і = т + 1,...,т + 1).

Вероятность Рп подсчитывают по формуле

*0 =

т -і т+1

+ I

В большинстве практических задач отношение — < 1. Формула

да

для PQ используется в виде

^0 =

 

т+1

1-(р/да)'

^/!   да!-да 1-р/т

 

435

Подпись: п-1
Подпись: 2   22 23Подпись: 24 1-(2/3)3Подпись: 1 +
Подпись: « 0,122,

р   — р —

± отк     л т+1

^P0=(2/3)3^-- 0,122 = 0,048,

P

mj

mim

1!   2!    3!   3!-3 1-2/3 да!

0,122-23

3!

+ 2

ґ2Л2

+ 3-

z^3

= 0,35.

 

Таким образом, i>   - 0,048, Af  - 0,35 машины. •

OTIC ОлС

16.6. Системы массового обслуживания с ожиданием

Граф состояний системы массового обслуживания с ожиданием аналогичен графу состояний системы с ограниченной длиной очереди при условии, что граница очереди отодвигается в бесконечность. Такой граф состояний изображен на рис. 16.3.

 

7иц

Рис. 16.3

 

тиц

 

тц

Вероятности состояний системы с ожиданием находят по формулам

436

Pt=^P0  0 = 1,2,..., т),

 

Pt=   ,H,-m^o  0' = m + l,...,m + k,...). /и! /и

При р//я< 1 для определения вероятности Р0 используют формулу

*0 =

/Я    _ J

уР_ + _н     

 

О Пример. В порту имеется два причала для разгрузки грузовых судов. Интенсивность потока судов равна 0,8 судна в сутки. Среднее время разгрузки одного судна составляет 2 суток. Предполагается, что очередь ожидающих разгрузки судов может быть неограниченной длины.

Найти среднее число занятых причалов и среднее время пребывания судна в порту.

Имеем: т = 2,   А, = 0,8сут_1,   ц = 1/7^,бсл = 0,5 сут-1. Находим:

р = А/ц = 0,8/0,5 = 1,6,

Подпись: -1-1

Подпись: 1,63
Подпись: ,   1,6 1,62 1 + — + -— +т і

£oi! w!(m-p)_ m=pq,  q==>m = ,6,

1!     2!    2! (2-1,6)

 

= 0,11,

Mn„ =

 

m+l

1

0,11 i,63 =2g mm!  (1-p/m)2   2-2!(1-0,8)2     ' '

 

 

Итак, т = 1,6 причала, Гож = 3,5 суток. •

 

Страница: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 |