Имя материала: Справочник по математике для экономистов

Автор: В.И. Ермаков

1.24. мощность множества

Множества А и Б называют эквивалентными или равномощ-нШЕЦ, если между ними установипвкитаимно однозначное соответствие (см. п. 1.23).

Множество А является бесконечным, если оно эквивалентно некоторому своему собственному подмножеству; в противном случае множество А — конечное.

Мощность конечного множества совпадает с количеством его элементов.

Всякое бесконечное множество, эквивалентное множеству N натуральных чисел, называется счетным.

Из любого бесконечного множества можно выделить счетное подмножество. Всякое бесконечное подмножество счетного множества является счетным множеством.

Объединение конечного или счетного множества счетных множеств есть счетное множество. Декартово произведение конечного множества счетных множеств есть счетное множество.

Множества Z (целых чисел) и Q (рациональных чисел) есть счетные множества.

Множество Действительных чисел) несчетно.

Всякое бесконечное множество, эквивалентное множеству действительных чисел, называют множеством мощности континуума.

 

Страница: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 |