Имя материала: Справочник по математике для экономистов

Автор: В.И. Ермаков

1.5. наибольший общий делитель и наименьшее общее кратное

Наибольшим общим делителем (НОД) нескольких натуральных чисел называют наибольшее натуральное число, на которое делится без остатка каждое из данных чисел. Для отыскания НОД нескольких чисел необходимо разложить их на простые множители, а затем составить произведение из общих множителей в наименьших степенях. Например. НОД чисел 54 и 180 равен 18. Действительно, 54 = 2130,= 2 СлеЗЙйательно, НОД (54, 480)18. Пояятие НОД используют при сокращении обыкновенных дробей.

Два числа яИ наоьівают взаимно простыми, если НОД (а,, а2)=1.

б

Наименьшим общим кратным (НОК) нескольких натуральных чисел называют наименьшее натуральное число, которое делится на каждое из данных чисел. Для отыскания НОК нескольких чисел необходимо разложить их на простые множители, в полученных разложениях выделить наибольшие степени каждого простого множителя и затем выделенные степени перемножить. Например, НОК чисел 12 и 90 равно 180. В самом деле, 12 = 223, 90=2 325иНОК (12, 90) = 2г ■ З2 ■ 5= 180.

Понятие НОК используют при сложении и вычитании обыкновенных дробей.

 

Страница: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 |