Имя материала: Ответы на экзаменационные билеты по эконометрике

Автор: Ангелина Витальевна Яковлева

50. двухфакторная производственная функция кобба-дугласа

Теория производственных функций была разработана американскими учёными Д. Коббом и П. Дугласом, опубликовавшими в 1928 г. опубликовали работу «Теория производства».

Эти учёные предложили одну из наиболее известных разновидностей производственных функций, носящей название функции Кобба-Дугласа.

Общий вид функции Кобба-Дугласа:

где а – числовой параметр производственной функции;

xi – i-тый аргумент или i-ый фактор производственной функции;

ai – показатель степени i-го аргумента.

Наиболее часто применяется двухфакторная форма функции Кобба-Дугласа f(K,L):

Q=A*Ka*Lβ,

где Q – объём выпущенной продукции (в стоимостном или натуральном выражении);

K – объём основного капитала или основных фондов;

L – объём трудовых ресурсов или трудовых затрат (измеряемое количеством рабочих или количеством человеко-дней).

A,a,β – неизвестные числовые параметры производственной функции, которые подчиняются условиям:

1) 0≤а≤1;

2) 0≤β≤1;

3) A›0;

4) a+β=1.

На основании четвёртного условия a+β=1, функция Кобба-Дугласа может быть представлена в виде:

Q=A*Ka*L1-а.

Данная производственная функция позволяет объяснить уровень совокупного выпуска Q количествами затраченного капитала K и труда L основных факторов производства.

На двухфакторную функцию Кобба-Дугласа накладываются определённые ограничения, которые необходимо учитывать при спецификации модели:

1)

2)

3)

4)

5)

6)

Первое и второе ограничения означают, что объём выпускаемой продукции увеличивается при постоянном значении одного из факторов и росте другого фактора. Однако если один из факторов производства фиксирован, а другой фактор возрастает, то каждая дополнительная (предельная) единица возрастающего фактора менее полезна (с точки зрения прироста выпуска продукции), чем предыдущая единица.

Третье и четвёртное ограничения означают, что при фиксированном значении одного из факторов последовательное увеличение другого фактора будет приводить к сокращению прироста значения Q.

Пятое и шестое ограничения означают, что каждый из факторов производства необходим в том смысле, что если один из факторов равен нулю (K=0 или L=0), то и объём производства также равен нулю Q=0.

 

Страница: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 |