Имя материала: Статистические методы прогнозирования в экономике

Автор: Т.А. Дуброва

1.2. виды временных рядов. требования, предъявляемые к исходной информации

 

Статистическое описание развития экономических процессов во времени осуществляется с помощью временных рядов.

Временным рядом (рядом динамики, динамическим рядом) называется последовательность значений показателя (признака), упорядоченная в хронологическом порядке, т.е. в порядке возрастания временного параметра. Отдельные наблюдения временного ряда называются уровнями этого ряда.

В англоязычной литературе для временных рядов используется термин «time series».

Каждый временной ряд содержит два элемента:

значения времени;

соответствующие им значения уровней ряда.

Временные ряды имеют характерные отличия от пространственных выборок:

Во-первых, в отличие от пространственных данных уровни временного ряда, как правило, не являются статистически независимыми.

Во-вторых, члены временного ряда не являются одинаково распределенными.

Очевидно, что эти особенности должны быть учтены в исследовательской работе.

В качестве показателя времени в рядах динамики могут указываться либо определенные моменты времени (даты), либо отдельные периоды (сутки, месяцы, кварталы, полугодия, годы и т. д.). В зависимости от характера временного параметра ряды делятся на моментные и интервальные.

В моментных рядах динамики уровни характеризуют значения показателя по состоянию на определенные моменты времени. Например, моментными являются временные ряды цен на определенные виды товаров, ряды курсов акций, уровни которых фиксируются для конкретных чисел. Примерами моментных рядов динамики могут служить также ряды численности населения или стоимости основных фондов, т. к. значения уровней этих рядов определяются ежегодно на одно и то же число.

В интервальных рядах уровни характеризуют значение показателя за определенные интервалы (периоды) времени. Примерами могут служить ряды годовой (месячной, квартальной) динамики производства продукции в натуральном или стоимостном выражении.

Цены акций промышленной компании на момент закрытия торгов

Объем вкладов физических лиц в Сбербанке России на рублевых счетах (на начало года)

В табл.1.1—1.2 приведены моментные временные ряды, а в табл.1.3—1.4 — интервальные.

Источник: Россия в цифрах 2002: Крат. стат. сб ./ Госкомстат России. — М., 2002. — (таб. 1.2,1,4).

 

Если уровни ряда представляют собой непосредственно не наблюдаемые значения, а производные величины: средние или относительные, то такие ряды называются производными. Уровни этих временных рядов получаются с помощью некоторых вычислений на основе абсолютных показателей. Примером производного ряда динамики может служить ряд среднесуточного производства промышленной продукции (табл. 1.5).

Данные графы 4 (табл. 1.5) получаются с помощью деления данных графы 2 на графу 3.

Важной особенностью интервальных рядов динамики абсолютных величин является возможность суммирования их уровней. В результате этой процедуры получаются накопленные итоги, имеющие осмысленное содержание благодаря отсутствию повторного счета. Например, суммируя фонд заработной платы работников предприятия за первые три месяца и три последующих месяца (табл.1.3), получаем, соответственно, фонд заработной платы за первый и второй кварталы, а сумма этих квартальных данных дает фонд заработной платы за полугодие.

Суммирование уровней моментного ряда динамики не практикуется, т.к. полученные накопленные итоги лишены всякого смысла. Например, уровни моментного ряда «Объем вкладов физических лиц в Сбербанке России на рублевых счетах (на начало года)» (табл. 1.2) содержат элементы повторного счета. Второй уровень частично содержит вклады населения, учтенные первым уровнем и т. д. Таким образом, моментные ряды динамики, в отличие от интервальных не обладают свойством аддитивности. (Термин происходит от английского глагола to add — добавлять).

При исследовании моментного ряда динамики определенный смысл имеет расчет разностей уровней, характеризующих изменение показателя за некоторый отрезок времени. Например, за 2001 г. объем вкладов физических лиц в Сбербанке России на рублевых счетах увеличился на 109,6 млрд. руб.

На практике часто используются временные ряды с нарастающими итогами. Уровни таких рядов дают обобщающий результат развития показателя с начала отчетного периода (квартала, полугодия, года и т. д.). В качестве примера рассмотрим данные о производстве телевизоров в России в первом полугодии 2002 г. (табл. 1.6). Данные 3 графы получены последовательным суммированием смежных уровней.

Уровни ряда могут принимать детерминированные или случайные значения. Примером ряда с детерминированными значениями уровней служит ряд последовательных данных о количестве дней в месяцах. Естественно, анализу, а в дальнейшем и прогнозированию, подвергаются ряды со случайными значениями уровней. В таких рядах каждый уровень может рассматриваться как реализация случайной величины — дискретной или непрерывной.

Успешность статистического анализа развития процессов во времени во многом зависит от правильного построения временных рядов.

Большое значение для дальнейшего исследования процесса имеет выбор интервалов между соседними уровнями ряда. Удобнее всего иметь дело с равноотстоящими друг от друга уровнями ряда. При этом, если выбрать слишком большой интервал времени, можно упустить существенные закономерности в динамике показателя. Например, по квартальным данным невозможно судить о месячных сезонных колебаниях. Информация может также оказаться слишком «короткой» для использования некоторых методов анализа и прогнозирования динамики, предъявляющих «жесткие» требования к длине рядов. В то же время, слишком малые интервалы между наблюдениями увеличивают объем вычислений, а также могут приводить к появлению ненужных деталей в динамике процесса, засоряющих общую тенденцию.

Безусловно, вопрос о выборе интервала времени между уровнями ряда должен решаться, исходя из целей каждого конкретного исследования.

Одним из важнейших условий, необходимых для правильного отражения временным рядом реального процесса развития, является сопоставимость уровней ряда. Для несопоставимых величин неправомерно проводить исследование динамики.

Появление несопоставимых уровней может быть вызвано разными причинами: изменением методики расчета показателя, изменением классификации, терминологии и т.д. Например, уровни временного ряда, характеризующие количество малых предприятий, могут оказаться несопоставимыми из-за изменения самого понятия «малое предприятие». Подразумевается, что это понятие должно быть одинаковым для всего исследуемого периода.

Чаще всего несопоставимость встречается в стоимостных показателях, что вызвано изменением цен в разные периоды времени, поэтому на практике осуществляют пересчет уровней в сопоставимые цены (цены одного периода).

Несопоставимость может возникнуть вследствие территориальных изменений, например, как результат изменения границ области, района, страны. При этом следует иметь в виду, что вопрос о сопоставимости будет зависеть от целей исследования. Например, при описании военной, экономической мощи страны следует учитывать данные в изменяющихся границах территории, а при сопоставлении темпов развития промышленности следует производить сравнение в одних и тех же территориальных границах.

Другой причиной несопоставимости могут служить структурные изменения. Например, произошло укрупнение нескольких ведомств путем слияния их в единое целое или укрупнение производства за счет слияния нескольких предприятий в одно объединение.

В большинстве случаев удается устранить несопоставимость, вызванную указанными причинами, путем пересчета более ранних значений показателей с помощью формальных методов. Хотя далеко не всегда проведение такой обработки обеспечивает требуемую точность, что может привести к снижению ценности исходной информации, а, следовательно, и к затруднению дальнейшего анализа.

Для успешного изучения динамики процесса важно, чтобы информация была полной, временной ряд имел достаточную длину (с учетом конкретных целей исследования). Например, при изучении периодических колебаний желательно иметь информацию не менее чем за три полных периода колебания. Поэтому при анализе сезонных колебаний на базе рядов месячной или квартальной динамики желательно иметь информацию, как правило, не менее чем за 3 года. Использование же более тонкого статистического аппарата для исследования периодичности (например, рассматриваемого в гл.5) требует большей длины информации — не менее пяти полных периодов колебаний.

Применение определенного математического аппарата также накладывает ограничение на допустимую длину временных рядов. Например, для использования регрессионного анализа требуется иметь временные ряды, длина которых в несколько раз превосходит количество независимых переменных.

Во временных рядах не должны содержаться пропущенные уровни. Пропуски могут объясняться как недостатками при сборе информации, так и происходившими изменениями в системе отчетности, в системе фиксирования данных. Например, изменяется круг основных видов промышленной продукции, данные о производстве которых собираются на базе срочной отчетности. Решение об исключении какого-то показателя может быть отменено через некоторое время, в связи с тем, что становится очевидной его важность для аналитических исследований. В этом случае для использования этого временного ряда в дальнейшем анализе необходимо восстановить пропущенные уровни одним из известных способов восстановления пропусков (выбор метода зависит от специфики конкретного временного ряда). Если же в систему показателей включен новый признак, учет которого не проводился ранее, то необходимо подождать, пока ряд достигнет требуемой длины или попытаться восстановить прежние значения косвенными методами (через другие показатели), если такой путь представляется возможным.

Уровни рядов динамики могут содержать аномальные значения или "выбросы». Часто появление таких значений может быть вызвано ошибками при сборе, записи и передаче информации. Возможными источниками появления ошибочных значений являются: сдвиг запятой при перенесении информации из документа, занесение данных в другую графу и т.д.

Выявление, исключение таких значений, замена их истинными или расчетными является необходимым этапом первичной обработки данных, т.к. применение математических методов к «засоренной» информации приводит к искажению результатов анализа. Однако аномальные значения могут отражать реальное развитие процесса, например, «скачок» курса доллара в «черный вторник». Как правило, эти значения также заменяются расчетными при построении моделей, но учитываются при расчете возможной величины отклонений фактических значений от полученных по модели.

Соответствие исходной информации всем указанным требованиям проверяется на этапе предварительного анализа временных рядов. Лишь после этого переходят к расчету и анализу основных показателей динамики развития, построению моделей прогнозирования, получению прогнозных оценок.

Страница: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 |