Имя материала: Эконометрика Книга первая Часть 1

Автор: Носко Владимир Петрович

Тема 4.2 формальные статистические критерии

 

Помимо графических существует довольно много процедур, предназначенных для проверки выполнения стандартных предположений о линейной модели наблюдений, использующих статистические критерии проверки гипотез. Остановимся только на нескольких таких процедурах. В каждой из них в качестве нулевой фактически берется гипотеза

H0:el9...9sn~U.d.N(0, а2).

Однако соответствующие критерии приспособлены для выявления специфических нарушений стандартных предположений, что делает каждый из критериев особо чувствительным именно к тем нарушениям, на которые он «настроен».

Критерий Голдфелда — Квандта (Goldfeld-Quandt test). Если графический анализ остатков указывает на возможную неоднородность дисперсий ошибок D(st)9 т.е. на наличие гетероскедастичности, то:

сначала наблюдения, насколько это возможно, упорядочивают по предполагаемому возрастанию дисперсий случайных ошибок;

затем отбрасывают г центральных наблюдений (для более надежного разделения групп с малыми и большими дисперсиями случайных ошибок), так что для дальнейшего анализа остается (п - г) наблюдений;

производят оценивание выбранной модели раздельно по первым (п - г)/2 и по последним (п - г)/2 наблюдениям;

вычисляют отношение F = RSS2/RSSX остаточных сумм квадратов, полученных при подборе модели по последним (п - г)/2 (остаточная сумма квадратов RSS2) и по первым (п - г)/2 (остаточная сумма квадратов RSS{) наблюдениям.

При принятии решения учитывают, что если все же D(£t) - <729 і = 1, п9 (дисперсии однородны) и выполнены остальные стандартные предположения о модели наблюдений, включая предположение о нормальности ошибок, то отношение F = RSS2/RSS{ имеет F-pacnpe-

деление Фишера F степенями свободы;

^ п-г       п-г     Л     (п-г     Л      (п-г л

—        р, —    Р   с   —          р   и ——-р

п-г п-г

-р9       р |, соответствующий вы-

• гипотеза Я0 : D(st) = <т2, і = 1, п9 (гомоскедастичность, однородность дисперсий ошибок — homoscedasticity) отвергается, если вычисленное значение F-отношения «слишком велико», т.е. превышает

критический уровень Fx_a бранному уровню значимости а.

Критерий Дарбина — Уотсона (Durbin-Watson test) применяется, когда наблюдения производятся последовательно во времени, с равными интервалами, и график изменения остатков во времени указывает на наличие авто-коррелированности (зависимости во времени) случайных составляющих є( модели наблюдений. Предполагается, что структура автокоррелированности определяется соотношением

є^рє^ + 8І9   / = 1,...,и,

где р < 1, a Si9 і = 1, п, — независимые в совокупности случайные величины, имеющие одинаковое нормальное распределение N(0, сг|), причем St не зависит статистически от st_s для s > 0.

Статистика Дарбина — Уотсона (Durbin-Watson statistic) определяется соотношением

І(*,-«м)2

DW = —         ,

г2 i =

где el9еп— остатки, получаемые при оценивании линейной модели наблюдений.

В качестве нулевой здесь берется гипотеза

Я0:/7=0,

соответствующая (при нашем предположении о нормальности распределения случайных ошибок) независимости в совокупности случайных величин єІ9 єп. В качестве альтернативной при анализе экономических данных чаще всего используют гипотезу

#0 :р>0,

соответствующую положительной автокоррелированности случайных величин єІ9єп (т.е. тенденции преимущественного сохранения знака случайной ошибки при переходе от /-го к (і + 1)-му наблюдению).

Статистика DW принимает значения в интервале от 0 до 4. Рассматриваемая как случайная величина, она имеет при гипотезе Н0 : р = 0 (т.е. если эта гипотеза верна) функцию плотности р(х)9 симметричную относительно точки х = 2 — середины этого интервала. Если в действительности р = р* > О, то значения статистики DОтяготеют к левой границе интервала. Поэтому в соответствии с общим подходом к построению односторонних статистических критериев необходимо было бы для выбранного нами уровня значимости а найти соответствующее ему критическое значение da (О < da < 2) и отвергать гипотезу Н0 : р=0в пользу Н0 : р> О при выполнении неравенстваDW<da.

Однако распределение статистики Дарбина — Уотсона зависит не только от п и/?, но и от конкретных значений xij9j = 1,р9 і = 1,п9 объясняющих переменных, что делает неосуществимым построение таблиц критических значений этого распределения. Дарбин и Уотсон преодолели это затруднение следующим образом. Предполагая, что в правой части модели наблюдений присутствует постоянная составляющая и отсутствуют запаздывающие значения объясняемой переменной, они нашли (при различных значениях пир) нижнюю dLa и верхнюю dUa границы интервала, в котором только и могут находиться критические значения da статистики Дарбина — Уотсона, независимо от того, каковы конкретные значения xij9j = 1, р9 і = 1, п. Иными словами,

0<dLa<da<dUa<2,

где dLa и dUa не зависят от конкретных значений xij9j = 1,    р9 і = 1, п9 а определяются только количеством наблюдений, количеством объясняющих переменных и установленным уровнем значимости критерия. Гипотеза #0 : р= 0:

отвергается в пользу гипотезы НА : р > 0, если DW< dLa

не отвергается, если D W > dUa.

Если же dLa <DW< dUa9 то никакого вывода относительно справедливости или несправедливости гипотезы Н0 : р- 0 не делается.

При соблюдении этих правил вероятность ошибочного отвержения гипотезы #0 : р - 0 не превосходит заданного уровня значимости а.

Критерий Харке — Бера (Jarque-Bera test) используется в ряде пакетов статистического анализа данных (например, в ЕViews) для проверки гипотезы #0 нормальности ошибок в модели наблюдений, точнее,

Я0: ех,...,£„ ~ U.d. N(09 а2)

(значение а2 не конкретизируется). Если эта гипотеза верна, то при большом количестве наблюдений п статистика

JB = n

(sample skewness) + (sample kurtosis - 3)

имеет распределение, близкое к распределению хи-квадрат с 2 степенями свободы ^2(2), функция плотности которого имеет вид:

1 --

р(х) = — е 2,х>0.

Здесь:

•  sample skewness — выборочный коэффициент асимметрии

Подпись: sample skewness = -

(т2У

з

■ч

sample kurtosis =—j;

sample kurtosis — выборочный куртозис

т4 ml

Подпись: 1 N
—I*

«,-=i

•  el9    en — остатки, полученные при оценивании модели методом наименьших квадратов.

Если распределение ошибок действительно является нормальным, то значения выборочного коэффициента асимметрии близки к 0, а значения выборочного куртозиса — к 3. Существенное отличие выборочного коэффициента асимметрии от 0 указывает на несимметричность (относительно 0) графика функции плотности распределения ошибок («скошенность» распределения).

При нарушении условия нормальности распределения ошибок значения статистики JB имеют тенденцию к возрастанию. Поэтому гипотеза нормальности ошибок отвергается, если значения этой статистики «слишком велики», а именно если

JB >XL(2),

где х-аО)— квантиль распределения ^2(2), соответствующая уровню 1-а.

 

J Замечание 4.2.1. Критерии Дарбина — Уотсона и Голдфелда — Квандта являются точными (неасимптотическими — non-asymptotic tests) в том смысле, что они непосредственно учитывают количество наблюдений я. В противоположность этому, критерий Харке — Бера является асимптотическим (asymptotic test): распределение статистики JB хорошо приближается распределением \%2(2) только при большом количестве наблюдений. Поэтому вполне полагаться на результаты применения критерия Харке — Бера можно только в таких ситуациях. Помимо критерия Харке — Бера, в специализированные пакеты программ статистического анализа данных часто встраиваются и другие асимптотические критерии (например, критерии Уайта и Бройша — Годфри, которые рассматриваются ниже).

Критерий Бройша — Годфри (Breusch-Godfrey test) используется в ряде пакетов статистического анализа данных (например, в Е Views) для проверки гипотезы некоррелированности ошибок в модели наблюдений

у і = в хі і + • • • + 0Р xiP + є і ,   і = 1,..., л.

При наших предположениях (включающих нормальность распределения ошибок) это соответствует гипотезе независимости в совокупности случайных величин єі9 і = 1,п. Напомним, что критерий Дарбина — Уотсона основан на рассмотрении модели наблюдений, в которой случайные составляющие et связаны соотношением

є{ = ре{_х +<5),    1 = 1,..., л,

где р < 1, a Si9 і = 1, л, — независимые в совокупности случайные величины, имеющие одинаковое нормальное распределение уУ(0, <j2s), причем st не зависит статистически от st_s для s > 0.

В такой модели наблюдений случайные составляющие єі9 разделенные двумя или более периодами времени и очищенные от влияния промежуточных    оказываются независимыми.

Критерий Бройша — Годфри допускает зависимость случайных составляющих єі9 разделенных К периодами времени и очищенных от влияния промежуточных Соответствующая модель зависимости имеет вид процесса авторегрессии порядка К:

єі=ахєі_х+... + акєі_к +8І9   ї = 1,..., л,

где опять 8І9 і = 1,л, — независимые в совокупности случайные величины, имеющие одинаковое нормальное распределение ;V(0, cr2s)9 причем St не зависит статистически от st_s для s > 0, а условие р < 1 заменяется следующим условием:

все корни многочлена 1 - atz - ... - aKzK = 0, в том числе и комплексные, по модулю больше 1.

Статистика этого критерия равна л/?2, где R2 — коэффициент детерминации, получаемый при оценивании вспомогательной модели

Єі=Ухі+--- + УРхір+аЄі-+~- + акеі-к+Уі>   / = 1,...,л,

где еХ9еп — остатки, полученные при оценивании основной модели наблюдений

уі=вхха+... + врх1р+єі9    1 = 1,..., л.

Недостающие значения е09ех_к заменяются нулями. В рамках вспомогательной модели проверяется гипотеза

Я0 : ах = ... = ак = 0.

Если эта гипотеза верна, то при большом количестве наблюдений п статистика критерия имеет распределение, близкое к распределению хи-квадрат с К степенями свободы. Гипотеза Н0 отвергается при заданном уровне значимости а, если вычисленное значение nR2 превышает критическое значение, равное квантили уровня (1-а) указанного распределения, т.е. если

nR2>(nR2)crit=xla(K).

Конечно, при интерпретации результатов применения критерия Бройша — Годфри следует помнить, что этот критерий асимптотический, тогда как критерий Дарбина — Уотсона точный. Однако, в свою очередь, возможность применения критерия Дарбина — Уотсона ограничивается тем, что он

допускает зависимость «очищенных» случайных ошибок только на один шаг, т.е. К = 1;

неприменим в ситуациях, когда в число объясняющих переменных включаются запаздывающие значения объясняемой переменной.

Критерий Бройша — Годфри свободен от этих ограничений.

Критерий Уайта (White test) используется в ряде пакетов статистического анализа данных (например, в Е Views) для проверки однородности дисперсий ошибок в модели наблюдений

у, = вх хп +... + вр xip + ei,   і = 1,..., п.

Критерий имеет два варианта.

Вариант I. В рамках вспомогательной модели

р р

ef =а+ Ха;Л + Х#*/У + V"    ' = Ъ • • •> и,

j = 2 j=2

где еХ9еп — остатки, полученные при оценивании основной модели наблюдений,

проверяется гипотеза

HQ:aj       =0,   у = 2,.

Статистика критерия равна nR2, где R2 — коэффициент детерминации, получаемый при оценивании последней модели. Если указанная гипотеза верна, то при большом количестве наблюдений п статистика критерия имеет распределение, близкое к распределению хи-квадрат с (2р -2) степенями свободы. Гипотеза #0 отвергается при заданном уровне значимости а, если вычисленное значение nR2 превышает критическое значение, равное квантили уровня (1 -а) указанного распределения, т.е. если

nR2>(nR2)crit=X2_a(2p-2).

Вариант И. В рамках вспомогательной модели

р          р р

е] = <*1 + z°7 ху + s ILPjk Xijxik +vi>   / = і,..W,

j=2       j=2 k=j

где een — остатки, полученные при оценивании основной модели наблюдений,

проверяется гипотеза

к=0,   У = 2    

°'[^=0, 2<j<k<p.

Статистика критерия равна nR2, где R2 — коэффициент детерминации, получаемый при оценивании последней модели. Если указанная гипотеза верна, то при большом количестве наблюдений п статистика критерия имеет рас-

Р2+Р~2

пределение, близкое к распределению хи-квадрат с -—^            степенями

свободы. Гипотеза Н0 отвергается при заданном уровне значимости а, если вычисленное значение nR2 превышает критическое значение, равное квантили уровня (1-а) указанного распределения, т.е. если

nR2>(nR2)crit=zL

р +р-2

Как и в случае критерия Бройша — Годфри, при интерпретации результатов применения обоих вариантов критерия Уайта следует помнить, что этот критерий асимптотический.

J Замечание 4.2.2. При описании критерия Уайта неявно предполагалось, что хп = 1. Если постоянная не включена в исходную модель наблюдений, то в моделях, оцениваемых на втором шаге обоих вариантов критерия Уайта, суммирование в первой сумме следует начинать с 7=1.

Критерий Рэмси RESET (Ramsey's Regression Specification Error Test) используется для проверки в рамках нормальной линейной модели

У і = вхп + — + вр*ір + et9   i = l,..., п.

предположения

E(st) = 0,   i = l,...,w, из-за невыполнения которого возникает смещение оценок коэффициентов.

При помощи этого критерия можно выявить:

наличие «пропущенных» переменных (т.е. невключение в правую часть уравнения некоторых существенных переменных);

неправильную функциональную форму представления некоторых (или всех) переменных (например, неправильное использование логарифмов переменных вместо уровней этих переменных);

наличие корреляции между объясняющими переменными и ошибкой в уравнении регрессии (которая может быть вызвана, например, наличием ошибок измерения объясняющей переменной — об этом см. разд. 6).

Есть несколько вариантов критерия Рэмси. Рассмотрим вариант, используемый в пакете EViews. В этом варианте сначала оценивается заявленная модель наблюдений, и по результатам ее оценивания вычисляются значения

Л=^Лі+ —+ ^pV   / = 1,...,л. Затем оценивается вспомогательная модель

Уі=0Ч+-" + Орхір+УІЇ +»- + Yr-9ri>   i = l,...,я,

и в рамках этой модели проверяется гипотеза

HQyx=... = yr_x=0.

Если эта гипотеза верна, то при большом количестве наблюдений п статистика критерия имеет распределение, близкое к распределению хи-квадрат с (г - 1) степенями свободы. Гипотеза Н0 отвергается при заданном уровне значимости а, если вычисленное значение nR2 превышает критическое значение, равное квантили уровня (1-а) указанного распределения, т.е. если

nR2>(nR2)crit=zL(r-V-

По поводу выбора значения г нет общих рекомендаций. Рэмси рассматривал возможность включения в правую часть вспомогательного уравнения второй, третьей и четвертой степеней у.. Однако в более поздних работах другие авторы рекомендуют использовать только вторую степень j),..

 

Критерии Чоу (Chow tests). Чоу предложил два критерия для проверки стабильности модели на всем периоде наблюдений. Один из них — Chow breakpoint test — основан на проверке гипотезы о сохранении значений всех коэффициентов при переходе от одного подпериода полного периода наблюдений к другому и будет рассматриваться в рамках приводимого ниже примера. Другой — критерий Чоу на качество прогноза (Chow forecast test) — сравнивает качество прогнозов, сделанных на основе оценивания модели на одной части периода для значений объясняемой переменной на другой части периода, с качеством «прогнозов», сделанных на основе оценивания модели на всем периоде наблюдений. Более точно, возьмем на периоде наблюдений два отрезка:

/=1,..., п0   и   / = п0 + 1,п.

Оценив коэффициенты модели

у і = в хі і + • • • + вр хіР + єі >   ? = 1,

по всем п наблюдениям, получим прогнозные значения

yt(n   i = n0 +l,...,w.

Наряду с этим оценим коэффициенты модели только по первым п0 наблюдениям. При этом получим прогнозные значения будущих значений объясняемой переменной

Уі(щ   1 = л0+1,...,л.

Если модель стабильна, то значения у£п0) не должны слишком сильно отличаться от значенийyt{n i = n0 + 1,п. Степень различия измеряет статистика

г (RSSn-RSSno)/(n-n0) RSSnJ(n0-p) '

где RSSn — остаточная сумма квадратов при оценивании модели на всем периоде наблюдений; RSS„Q— остаточная сумма квадратов при оценивании модели по первым

л о наблюдениям.

Если модель стабильна (и выполнены другие стандартные предположения), то указанная статистика имеет F-распределение, F(n - л0, п0 - р). Гипотеза о стабильности модели отвергается, если вычисленное значение этой статистики превышает значение Fx_a(n - п0, п0 -р).

 

ПРИМЕР 4.2.1

Рассмотрим статистические данные по США за период с 1960 по 1985 г. о следующих макроэкономических показателях:

DPI     — годовой совокупный располагаемый личный доход;

CONS  — годовые совокупные потребительские расходы;

ASSETS — финансовые активы населения на начало календарного года.

(все показатели в млрд долл., в ценах 1982 г.). Данные приведены в табл. 4.2.

Характер изменения этих макроэкономических показателей демонстрирует график на рис. 4.19.

Рассмотрим модель наблюдений

CONSt = вх + 62DPIt + въ ASSETSt +єп   / = 1     26,

где индексу t соответствует (1959 + ґ)-й год. Это модель с 3 объясняющими переменными:

Хх =1,   Х2= DPI,   Х3 = ASSETS. Оценивание этой модели дает следующие результаты: R2 = 0.9981,

в2 = 0.672,    Р-значение = 0.0000;

#з = 0.174,    Р-значение = 0.0069;

так что оценки коэффициентов при объясняющих переменных Х2 = DPI, Хъ - ASSETS имеют высокую статистическую значимость.

Ниже представлены диаграмма рассеяния для предсказанных (CONSF) и наблюдаемых (CONS) значений переменной CONS (рис. 4.20), а также гра-

фик зависимости стандартизованных остатков ct = — (RESJSTAND) от пред-

S

сказанных (CONSF) значений переменной СОЛ/Б (рис. 4.21).

График на рис. 4.20 отражает высокое значение коэффициента детерминации. На графике на рис. 4.21 заметно возрастание разброса точек относительно нулевого уровня при значениях CONSF > 1600.

Поскольку первый из приведенных в этом примере графиков указывает на возрастание годовых потребительских расходов с течением времени, для реализации процедуры Голдфелда — Квандта естественно воспользоваться уже имеющимся упорядочением наблюдений во времени (это и будет направлением ожидаемого возрастания дисперсий случайных ошибок). Выделим из 26 наблюдений две группы, состоящие из первых 10 и последних 10 наборов значений (хп, xt2, хв), соответствующие периодам с 1960 по 1969 г. и с 1976 по 1985 г. (так что отброшены г = 6 центральных наблюдений). При раздельном подборе линейных моделей по этим группам наблюдений получаем остаточные суммы квадратов RSSX = 208.68 и RSS2 = 1299.66 соответственно, так что наблюдаемое значение F-статистики критерия Голдфелда — Квандта равно: ^ = !^ = 6.228. RSSl 208.68

Если стандартные предположения о случайных ошибках в модели наблюдений выполнены, то тогда отношение указанных остаточных сумм квадратов  как  случайных  величин  имеет F-распределение Фишера

26  6     26  6 ^

- 3,       3 = F(7,7). Если, как обычно, зададим уровень значи-

,2 '2

мости а = 0.05, то соответствующее этому уровню значимости критическое значение F-статистики равно F0 95 (7, 7) = 3.79.

Наблюдаемое значение этой статистики 6.228 превышает критическое, поэтому гипотеза о выполнении стандартных предположений об ошибках отклоняется в пользу гипотезы о возрастании дисперсий D(st) с ростом значений вх + 02DPI + QASSETS. Заметим, наконец, что вероятность превышения случайной величиной с распределением F(7, 7) значения 6.228 (Р-значение) равна 0.0138.

Сравним результаты применения критерия Голдфелда — Квандта с результатами, полученными при использовании двух вариантов критерия Уайта.

Для первого варианта наблюдаемое значение статистики критерия равно nR2 = 8.884. Поскольку /7 = 3, число степеней свободы соответствующего распределения хи-квадрат равно 2р - 2 = 4. Вероятность того, что случайная величина, имеющая такое распределение, превысит значение 8.884, равна 0.0641, так что значение nR2 = 8.884 меньше критического, а значит, гипотеза об однородности дисперсий этим вариантом критерия Уайта не отвергается.

При использовании второго варианта наблюдаемое значение статистики критерия равно nR2 = 9.699. Число степеней свободы соответствующего рас-

р2+р-2

пределения хи-квадрат равно ——^           = 5. Вероятность того, что случайная

величина, имеющая такое распределение, превысит 9.699, равна 0.0842, так что значение nR2 = 9.699 меньше критического, а значит, гипотеза об однородности дисперсий не отвергается и этим вариантом критерия Уайта.

Таким образом, статистические выводы относительно однородности дисперсий случайных составляющих в рассматриваемой модели наблюдений оказались противоречивыми: гипотеза об однородности дисперсий отвергается критерием Голдфелда — Квандта, но не отвергается обоими вариантами критерия Уайта. Как можно объяснить такое противоречие?

Оба варианта критерия Уайта асимптотические, тогда как критерий Голдфелда — Квандта учитывает реально имеющееся количество наблюдений.

Оба варианта критерия Уайта являются критериями согласия, не настроенными на какой-то специфический класс альтернатив гипотезе об однородности дисперсий, тогда как использование критерия Голдфелда — Квандта непосредственно связано с альтернативой, выраженной в форме возрастания дисперсий ошибок для соответствующего упорядочения наблюдений. И здесь проявляется общее положение: критерии, построенные с расчетом на некоторый узкий класс альтернатив, оказываются более мощными в отношении этих альтернатив по сравнению с критериями, рассчитанными на более широкий класс альтернатив (т.е. они чаще отвергают нулевую гипотезу, когда верна не она, а гипотеза из указанного узкого класса альтернатив).

et

Рассмотрим график зависимости стандартизованных остатков ct = — от

S

номера наблюдений (рис. 4.22) и его вариант в виде зависимости от года наблюдения (рис. 4.23).

В данном случае обращает на себя внимание наличие серий остатков одинакового знака, что сигнализирует о том, что ошибки в модели наблюдений, скорее всего, имеют положительную автокорреляцию. Для 26 наблюдений и р = 3 объясняющих переменных границы для критического значения статистики Дарбина — Уотсона при а - 0.05 (односторонний критерий) равны:

^l,o.o5 = 1-22,   dU 0 05 = 1.55.

В то же время вычисленное по остаткам от оцененной модели значение статистики Дарбина — Уотсона равно DW - 1.01, что меньше нижней границы = 1-22. Следовательно, нулевая гипотеза о выполнении стандартных предположений отклоняется в пользу гипотезы о положительной автокоррелированности ошибок.

Сравним результаты применения критерия Дарбина — Уотсона с полученными при использовании критерия Бройша — Годфри.

Если исходить из допущения зависимости очищенных случайных ошибок только на один шаг (К= 1), как это делается при использовании критерия

Подпись:  Дарбина — Уотсона, то в этом случае вычисленное значение статистики критерия Бройша — Годфри равно nR2 = 6.068, что соответствует Р-значе-нию, равному 0.014. Гипотеза независимости ошибок отвергается, что согласуется с результатом, полученным при использовании критерия Дарбина — Уотсона.

В то же время если взять К = 5, то nR2 = 10.331, что соответствует Р-зна-чению, равному 0.066. Гипотеза о независимости ошибок в этом случае не отвергается при установленном уровне значимости а = 0.05, что расходится с результатом, полученным при использовании критерия Дарбина — Уотсона. Эта гипотеза не отвергается также при выборе К = 6 (nR2 = 0.095), К = 7 (nR2 = 0.127) и т.д. Это вполне объяснимо: выбор К=5,К=6,К=7 соответствует выбору все более широкого

класса альтернатив по сравнению с К = 1, что приводит к уменьшению вероятности отвергнуть гипотезу независимости ошибок в случае, когда она неверна.

Проверим, наконец, предположение о нормальном распределении ошибок. Для этого сначала рассмотрим диаграмму «квантиль-квантиль» (Q-Q plot) (рис. 4.24), диаграмму плотности (DP-plot) (рис. 4.25) и ядерную оценку плотности (рис. 4.26).

Первая диаграмма не выглядит удовлетворительной, вторая обнаруживает определенную асимметрию, как и ядерная оценка плотности. Выборочный коэффициент асимметрии здесь равен -1.285, выборочный куртозис

равен 5.321. Оба эти значения говорят отнюдь не в пользу нормальности ошибок. Статистика критерия Харке — Бера принимает значение 12.997, что соответствует Р-значению 0.0015. Следовательно, и этот критерий не подтверждает гипотезу о выполнении стандартных предположений об ошибках. Результаты применения критерия RESET приведены в табл. 4.3.

Они говорят о нарушении предположения

E(st) = 0,     f = l,...,W.

Что касается критерия Чоу, сравнивающего прогнозные значения (Chow Forecast Test), полагая в нем л0 = 13, получим значение F-статистики F = 11.037, что соответствует Р-значению 0.0003 и говорит о нестабильности модели.

Итак, обнаружили, что модель линейной связи

CONSt =вх+ 62DPIt + въ ASSETS, +єп   Г = 1      26,

оказалась неудовлетворительной, поскольку анализ остатков от оцененной модели выявил гетероскедастичность и автокоррелированность ошибок, отличие распределения ошибок от нормального, нарушение условия E(st) = 0, t = 1,п, и нестабильность модели.

График зависимости стандартизованных остатков ct = — от номера на-

S

блюдений и его вариант в виде зависимости от года наблюдения указывают на заметную разницу в поведении остатков в первой части периода наблюдений (до 1972 г.) и во второй его части (1973—1985 гг.). Такое различие в поведении остатков объясняется тем, что в 1973 г. произошел структурный сдвиг в экономике, связанный с мировым топливно-энергетическим кризисом, который изменил характер связи между рассматриваемыми макроэкономическими факторами. Последнее могло, например, выразиться в изменении значений параметров вх, в2, въ при переходе ко второй части периода наблюдений. Возможность такого изменения учитывает расширенная модель

CONS, = yx(D\ + y2(D2), + y3(DPI), + yA(DPI2), +

+y5(ASSETS),+y6(ASSETS2),+s„   г = 1    26,

где (Dl), — фиктивная переменная, равная 1 для t = 1, 13 (что соответствует периоду с 1960 по 1972 г.) и равная 0 для t = 14, 26 (что соответствует периоду с 1973 по 1985 г.);

(D2)t = 1 - (D)t — фиктивная переменная, равная 0 для t = 1,13 и равная 1 для t = 14,26;

{DPI)t = DPI, • (Dl), — переменная, равная (DPI), для t = 1, 13 и равная 0 для t- 14,26;

{DPI2)t = DPI, • (D2), — переменная, равная 0 для t = 1, 13 и равная (DPI), дляґ=14,26;

(ASSETSl), = ASSETS, • (Dl), — переменная, равная ASSETS, для t = 1,13 и равная 0 для t = 14,26;

(ASSETS!), = ASSETS, • (D2), — переменная, равная 0 для t = 1, 13 и равная ASSETS, для t = 14,26.

Заметим, что при этом

(DPIX), + (DPI 2), = DPI,,   t = ,...,26, (ASSETSl)t + (ASSETS!)t = ASSETS,,   t = 1,..., 26. В рамках расширенной модели проверим гипотезу

Н0:у,=У2,   Уз=Га> Г5=Гб-

Это линейная гипотеза с q = 3 линейными ограничениями, которые можно записать в виде

яо: У~Уг=Ъ,   Гз-у4=0, у5-у6=0.

Будем проверять эту гипотезу, используя F-критерий. В такой постановке F-критерий известен как критерий Чоу на структурный сдвиг (Chow breakpoint test). Значению і^-статистики 10.490 соответствует Р-значение 0.0002, так что гипотеза Н0 отвергается, и это говорит об изменении хотя бы одного из параметров вх, в2, въ при переходе ко второй части периода наблюдений. Поскольку оценки параметров у5 и у6 статистически незначимы (им соответствуют Р-значения 0.1157 и 0.5599), проверим линейную гипотезу о равенстве нулю обоих этих параметров (q = 2), используя F-критерий. Получаемое Р-значение 0.2412 свидетельствует о том, что последняя гипотеза не отвергается, так что, допуская изменение параметров модели при переходе ко второй части периода наблюдений, можно вообще отказаться от включения в модель переменной ASSETS и ограничиться моделью

CONS,=yx(D),+y2(D2),+y,(DPI),+y4(DPI2),+s„   ґ = 1    26.

Оценивание этой модели дает следующие результаты: R2 = 0.9992, ух = 58.786,     Р-значение = 0.0119; у2 = -234.836,  Р-значение = 0.0000; у3 = 0.864,       Р-значение = 0.0000; Я = 1.012,       Р-значение = 0.0000.

Гипотеза Я0 : у3 = у4 (q - 1) здесь отвергается (Р-значение = 0.0000), как и гипотеза #0 : ух = у2, так что структурный сдвиг затрагивает и постоянную, и коэффициент при DPI.

Значение статистики Дарбина — Уотсона равно DW - 2.06 и не выявляет автокоррелированности ошибок. К тому же результату приводит и применение критерия Бройша — Годфри с Я" = 1, К = 2, К = 3. Критерий Уайта дает Р-значение = 0.508, не выявляя гетероскедастичности, а критерий Харке — Бера дает Р-значение = 0.469, не выявляя существенных отклонений распределения ошибок от нормального.

Вспомним, однако, про критерий Голдфелда — Квандта. Опять выделив периоды с 1960 по 1969 г. и с 1976 по 1985 г., получим значение F-статистики 3.354, соответствующее Р-значению = 0.0832, так что на сей раз и этот критерий не обнаруживает существенной гетероскедастичности.

Результаты использования критерия RESET приведены в табл. 4.4.

В данном случае не обнаруживается и нарушения предположения

= 0,   t = ,...,n.

В связи с этим есть основания принять в качестве возможной модели наблюдений, объясняющей изменение объема совокупного потребления на периоде с 1960 по 1985 г., оцененную модель

CONS, = 58.786(D1), - 234.836(£>2), +

+ 0.864(DP/1), +1.012(£>/72), +є,,   / = 1,..., 26.

Эту модель можно также записать в виде

Г58.786 + 0.m(DPI). +є,,   t = 1,..., 13

CONS. =        ' '

'   [-234.836 + 1.012(^7),+^,   / = 14,...,26.

Исходя из последней формы записи такая модель называется двухфазной линейной регрессией (two-phase linear regression model) или линейной моделью с переключением (switching regression model). Заметим, наконец, что, допустив возможность изменения постоянной и коэффициента при DPI при переходе ко второй части периода наблюдений, можно допустить при этом и изменение дисперсии ошибок, т.е. полагать, что D(st) = а для t - 1, 13 и D(st) = <j для t = 14, 26. Оценки для ах и <т2 в этом случае равны соответственно 8.887 и 14.886.

 

Замечание 4.2.3. Следуя идеологии «тест, тест, тест», останавливаемся на модели, которая успешно проходит целый ряд тестов, проверяющих гипотезу о выполнении всех стандартных предположений и направленных на выявление специфических нарушений основных предположений. Между тем при таком подходе возникает проблема, связанная с потерей контроля над уровнем значимости используемой процедуры.

Предположим, что для проверки нулевой гипотезы (в данном случае — гипотезы о выполнении всех стандартных предположений) используются К тестов (статистических критериев), основанных на К различных статистиках ТІ9 Г2, Тк и имеющих критические множества Rl9RK9 соответствующие одинаковому для всех к уровню значимости а, так что Р{ТК є RK) = а9 k- 1, К. Обычно при использовании совокупности К тестов нулевая гипотеза отвергается, если ТК є RK хотя бы для одного к9 к = 1, К. При использовании такого правила результирующая ошибка 1-го рода а*9 т.е. вероятность отвергнуть в итоге нулевую гипотезу, когда она верна, не совпадает с уровнем значимости а каждого отдельного критерия. Значение а* больше, чем а9 но его невозможно вычислить, если неизвестно совместное распределение вероятностей указанных К статистик. В связи с этим возникает необходимость в получении верхней границы для а*. Наиболее простым способом является использование для этой цели неравенства Бонферрони:

а* = Р{ТК е RK хотя бы для одного k9k= 1,К} < <^Р{ТкеЯк} = Ка.

к=

Отсюда вытекает, что если мы хотим обеспечить для процедуры в целом уровень значимости а9 то для каждого отдельного критерия достаточно взять уровень значимости а/К. При этом результирующая ошибка 1-го рода не превысит а. Такая процедура весьма проста, но в случае сильной коррелированности статистик Tl9 Т29 ТК реальная ошибка 1-го рода этой процедуры может оказаться существенно меньше заявленного уровня значимости а. Исследование этого вопроса проведено в работе (Godfrey, 2005).

Замечание 4.2.4. Вообще говоря, при построении моделей регрессии для переменных, значения которых развернуты во времени, т.е. являются временными рядами, возникает целый ряд проблем, которые рассматриваются в соответствующем разделе эконометрики — анализе временных рядов (time series analysis). Эти проблемы будут изучены во второй части данного учебника.

 

КОНТРОЛЬНЫЕ ВОПРОСЫ

Какие статистические критерии используются для выявления гетероскедастично-сти? Чем принципиально различаются критерии Голдфелда — Квандта и Уайта?

Какие критерии используются для выявления автокоррелированности ошибок? Чем принципиально различаются критерии Дарбина — Уотсона и Бройша — Годфри?

Какие критерии используются для выявления нарушения предположения о нормальном распределении ошибок?

Какие критерии используются для выявления неправильной спецификации модели (неправильная функциональная форма, нестабильность коэффициентов модели)?

Страница: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |