Имя материала: Эконометрика Книга первая Часть 2

Автор: Носко Владимир Петрович


Андерсон Т. (1976). Статистический анализ временных рядов. М: Мир.

Бокс Дж., Дженкинс Г. (1974). Анализ временных рядов. Прогноз и управление. Вып. 1, 2. М.: Мир.

Канторович Г.Г. (2002) Лекции: Анализ временных рядов // Экономический журнал ВШЭ. Т. 6. № 1—4; Т. 7. 2003. № 1. Материал выложен на сайте: http://www. ecsocman.edu.ru/db/msg/48941 .html

Кендалл М. Дж., Стьюарт А. (1976). Многомерный статистический анализ и временные ряды. М.: Наука.

Магнус Я.Р., Катышев П.К, Пересецкий А.А. (2005). Эконометрика. Начальный курс: Учебник. 7-е изд., испр. М.: Дело.

Носко В.П. (2004). Эконометрика. Элементарные методы и введение в регрессионный анализ временных рядов. М.: ИЭПП.

Носко В.П. (2004) Эконометрика: введение в регрессионный анализ временных рядов. М.: Логос.

Хеннан Э. (1974). Многомерные временные ряды / пер. с англ. М.: Мир.

Эконометрический анализ динамических рядов основных макроэкономических показателей (2001). Научные труды ИЭПП № 34Р. М.: ИЭПП.


Akaike Н. (1973). Information Theory and an Extension of the Maximum Likelihood Principle // Petrov B.N. and Csaki F. (eds.). Proceedings, 2nd International Symposium on Information Theory. P. 267—281. Budapest: Akademia Kiado.

Akaike H (1974). A new look at the statistical model identification // IEEE Transactions on Automatic Control. Vol. 19. P. 716—723.

Bartlett M.S. (1946). On the Theoretical Specification of sampling properties of Auto-correlated Time Series // Journal of the Royal Statistical Society. Series B. Vol. 8. P. 27—41.

Bierens H.J. (1997). Testing the Unit Root with Drift Hypothesis Against Nonlinear Trend Stationarity, with an Application to the US Price Level and Interest Rate // Journal of Econometrics. Vol. 81. P. 29—64.

Box G.E.P., Pierce D.A. (1970). Distribution of Residual Autocorrelations in Autore-gressive Integrated Moving Average Time Series Models // Journal of the American Statistical Association. Vol. 65. P. 1509—1526.

Chan K.H, Hayya J.C., OrdJ.K. (1977). A Note on Trend Removal Methods: The Case of polynomial versus variate differencing // Econometrica. Vol. 45. P. 737—744.

Cheung Y.-W., Lay KS. (1995). Lag Order and Critical Values of a Modified Dickey-Fuller Test // Oxford Bulletin of Economics and Statistics. 1995. Vol. 57. № 3. P. 411—419.

Cochrane J.К (1998). How Big is the Random Walk in GNP? // Journal of Political Economy. Vol. 96. P. 893—920.

Davidson R, MacKinnon J.G (1993). Estimation and Inference in Econometrics. New York: Oxford University Press.

Dickey DA. (1976). Estimation and Hypothesis Testing for Nonstationary Time Series. Ph.D. dissertation. Iowa State University.

Dickey DA., Bell W.R, Miller R.B. (1986). Unit Roots in Time Series Models: Tests and Implications // American Statistican. Vol. 40. P. 12—26.

Dickey DA., Fuller WA. (1981). Likelihood Ratio Statistics for Autoregressive Time Series With a Unit Root // Econometrica. Vol. 49. P. 1057—1072.

Dickey DA., Pantula S. (1987). Determining the Order of Differencing in Autoregressive Processes // Journal of Business and Economic Statistics. Vol. 15. P. 455—461

Dolado H., Jenkinson Т., Sosvilla-Rivero S. (1990). Cointegration and Unit Roots // Journal of Economic Surveys. Vol. 4. P.243—273.

Elliott G., Rothenberg T.J., Stock J.H. (1996). Efficient Tests for an Autoregressive Unit Root // Econometrica. Vol. 64. P. 813—836

Enders W. (1995). Applied Econometric Time Series. New York: Wiley.

Engle R.F., Granger C.W.J. (1987). Co-integration and Error Correction: Representation, Estimation, and Testing // Econometrica. Vol. 55. P. 251—276.

Engle R.F., Granger C. W.J. (1991). Cointegrated Economic Time Series: An Overview with New Results // R.F. Engle and C.W.J. Granger (eds.), Long-Run Economic Relationships, Readings in Cointegration. New York: Oxford University Press. P. 237—26.

EntorfH. (1992). Random Walk with Drift, Simultaneous Errors, and Small Samples: Simulating the Bird's Eye View, Institut National de la Statistique et des Etudes Economiques.

Fuller WA. (1976). Introduction to Statistical Time Series. New York: Wiley.

Fuller WA. (1996). Introduction to Statistical Time Series. 2nd ed. New York: Wiley.

Ghysels E., Osborn D.R. (1991). The Econometric Analysis of Seasonal Time Series. Cambridge: Cambridge University Press.

Ghysels E., Perron P. (1992). The Effect of Seasonal Adjustment Filters on Tests for a Unit Root // Journal of Econometrics. Vol. 55. P. 57—98.

Granger C. W.J. (1983). UCSD Discussion Paper, 83—13.

Hall A. (1994). Testing for a Unit Root in Time Series with Pretest Data-Based Model Selection // Journal of Business and Economic Statistics. Vol. 12. P. 451 —470.

Hamilton JD. (1994). Time Series Analysis. Princeton: Princeton University Press.

Hannan E.J., Quinn B.G (1979). The Determination of the Order of an Autoregression // Journal of the Royal Statistical Society. Series B. Vol. 41. P. 190—195.

Holden D., Perman R. (1994). Unit Roots and Cointegration for Economist // Cointegration for the Applied Economists (ed. by Rao B.B.). Basingstoke: Macmillan.

Jarque C, Bera A. (1980). Efficient Tests for Normality, Homoskedasticity, and Serial Independence of Regression Residuals. Economics Letters. 1980. Vol. 6. P. 255—259.

Johansen S. (1988). Statistical Analysis of Cointegration Vectors // Journal of Economic Dynamics and Control. Vol. 12. P. 231—254.

Johansen S. (1991). Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive models // Econometrica. Vol. 59. P. 1551 —1580.

Johnston J, DiNardo J. (1997). Econometric Methods. 4th ed. N.Y., McGraw-Hill.

Kavalieris L. (1991). A Note on Estimating Autoregressive-Moving Average Order // Biometrika. 1991. Vol. 78. P. 920—922.

Kwan A.CC. (1996). A Comparative Study of the Finite-sample Distribution of some Portmanteau Tests for Univariate Time Series Models // Commun. Statist-Simula. Vol. 25. №4. P. 867—904.

Kwan A.C.C., Sim A.-B. (1996). On the Finite-Sample Distribution of Modified Portmanteau Tests for Randomness of a Gaussian Time Series // Biometrika. Vol. 83. № 4. P. 938—943.

Kwiatkowski D., Phillips P.CB., Schmidt P., Shin Y. (1992). Testing of the Null Hypothesis of Stationary against the Alternative of a Unit Root // Journal of Econometrics. Vol. 54. P. 159—178.

Leybourne S.J. (1995). Testing for Unit Roots Using Forward and Reverse Dickey-Fuller Regressions // Oxford Bulletin of Economics and Statistics. Vol. 57. P. 559— 571.

Ljung G, Box G.E.P. (1979). On a Measure of Lack of Fit in Time Series Models // Biometrika. Vol. 66. P. 255—270.

Lomnicki Z.A. (1961). Tests for Departure from Normality in the Case of Linear Stochastic Processes // Metrika. №4. P. 37—62.

MacKinnon J.G. (1991). Critical Values for Cointegration Tests. Chapter 13 // Long-run Economic Relationships: Readings in Cointegration / eds. by R.F. Engle and Granger C.WJ. Oxford University Press.

Maddala G.S., In-Moo Kim (1998). Unit Roots, Cointegration and Structural Change. Cambridge: Cambridge University Press.

Mann H.B., Wald A. (1943). On Stochastic Limit and Order Relationships // Annals of Mathematical Statistics. Vol. 14. P. 217—277.

Mills T. (1999). The Econometric Modeling of Financial Time Series. 2nd ed. Cambridge: Cambridge University Press.

Murray C.J., Nelson C.R. (2000). The Uncertain Trend in U.S. GDP // Journal of Monetary Economics. Vol. 46. P. 79—95.

Nelson C.R., Plosser C.I. (1982). Trends and Random Walks in Macroeconomic Time Series // Journal of Monetary Economics. Vol. 10. P. 139—162.

Newey W., West К (1994). Automatic Lag Selection in Covariance Matrix Estimation // Review of Economic Studies. Vol. 61. P. 631—653.

Ng S, Perron P. (1995). Unit Root Tests in ARMA models With Data-Dependent Methods for the Selection of the Truncation Lag // Journal of American Statistical Association. Vol. 90. P. 268—281.

Nunes L.S., NewboldP., Kuan C-M. (1997). Testing for Unit Roots with Breaks. Evidence on the Great Crash and the Unit Root Hypothesis Reconsidered // Oxford Bulletin of Economics and Statistics. 1997. Vol. 59. № 4. P. 435—448.

Patterson К (2000). An Introduction to Applied Econometrics: A Time Series Approach. New York: St's Martin Press.

Perron P. (1988). Trends and Random Walks in Macroeconomic Time Series: Further Evidence from a New Approach // Journal of Economic Dynamic and Control. 1988. Vol. 12. P. 297—332.

Perron P. (1989a). The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis // Econometrica. Vol. 57. P. 1361 — 1401.

Perron P. (19896). Testing for a Random Walk: A Simulation Experiment When the Sampling Interval Is Varied // Advances in Econometrics and Modelling (ed. by B. Ray). Dordrecht and Boston: Kluwer Academic Publishers.

Perron Р. (1997). Further evidence on breaking trend functions in macroeconomic variables // Journal of Econometrics. Vol. 80. №2. P. 355—385.

Perron P., Vogelsang T.J. (1993). Erratum // Econometrica. Vol. 61. № 1. P. 248—249.

Phillips P.C.B. (1987). Time Series Regression with a Unit Root // Econometrica. Vol. 55. P. 277—301.

Phillips P.C.B., Perron P. (1988). Testing for a Unit Root in Time Series Regression // Biometrika. Vol. 75. P. 335—346.

Pollock D.S.G. (1999). Handbook of Time Series Analysis, Signal Processing, and Dynamics (Signal Processing and its Applications). New York: Academic Press.

Said E., Dickey D.A. (1984). Testing for Unit Roots in Autoregressive Moving Average Models of Unknown Order // Biometrika. Vol. 71. P. 599—607.

Saikonnen P. (1991). Asymptotically Efficient Estimation of Cointegrated Regressions // Econometric Theory. Vol. 7. P. 1—21.

Sargan J.D., Bhargava A. (1983).Testing Residuals from Least Squares Regression for Being Generated by the Gaussian Random Walk // Economertica. Vol. 51. P. 153 — 174.

Schmidt P., Phillips P.C.B. (1992). LM Tests for a Unit Root in the Presence of Deterministic Trends // Oxford Bulletin of Economics and Statistics. Vol. 54. P. 257—287.

Schwarz G. (1978). Estimating the Dimension of a Model // The Annals of Statistics. Vol. 16. P. 461—464.

Schwert G.W. (1989). Tests for Unit Roots: A Monte Carlo Investigation // Journal of Business and Economic Statistics. Vol. 7. P. 147—159.

Shiller R.J., Perron P. (1985). Testing the Random Walk Hypothesis: Power versus Frequency of Observation // Economic Letters. Vol. 18. P. 381—386.

Sims C.A., Stock J.H., Watson M.W. (1990). Inference in Linear Time Series Models with Some Unit Roots // Econometrica. Vol. 58. P. 113—144.

Slutzki E. (1937). The Summation of Random Causes as the Source of Cyclic Processes // Econometrica. Vol. 5. P. 105.

Stock J.H., Watson M. W. (1993). A Simple Estimator of Cointegrating Vectors in Higher Order Integrated Systems // Econometrica. Vol. 61. P. 783—820.

Taylor A.M.R. (2000). The Finite Sample Effects of Deterministic Variables on Conventional Methods of Lag-Selection in Unit-Root Tests // Oxford Bulletin of Economics and Statistics. Vol. 62. P. 293—304.

Kwiatkowski D., Schmidt P. (1990). Dickey-Fuller Tests with Trend, Commun // Statist-Theory Meth. Vol. 19. № 10. P. 3645—3656.

West K.D. (1988). Asymptotic Normality, When Regressors Have a Unit Root // Econometrica. Vol. 56. P. 1397—1417.

White J.S. (1958). The Limiting Distribution of the Serial Correlation Coefficient in the Explosive Case // Annals of Mathematical Statistics. Vol. 29. 1188—1197.

Wold H. (1938). A study in the analysis of stationary time series. Stockholm: Almqvist and Wiksell.

Yu H. (2007). High moment partial sum processes of residuals in ARMA models and their applications // Journal of Time Series Analysis. Vol. 28. No. 1. P. 72—91.

Zivot E., Donald Andrews (1992). Further Evidence on the Great Crash, the Oil-Price Shocks, and the Unit Root hypothesis // Journal of Business and Economic Statistics. Vol. 10. 251—272.


Страница: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |