Имя материала: Эконометрика.Конспект лекций

Автор: Ангелина Витальевна Яковлева

3. пример применения двухшагового метода наименьших квадратов к модели, включающей сверхидентифицированное уравнение

Если система содержит хотя бы одно сверхидентифицирован-ное уравнение, то ни обычный, ни косвенный метод наименьших квадратов применять для оценки коэффициентов структурной формы модели нельзя. В данном случае необходимо применять двухшаговый метод наименьших квадратов, который реализуется в несколько этапов.

Рассмотрим конкретный пример оценивания сверхидентифи-цированного уравнения системы с помощью ДМНК. Для этого в модель спроса и предложения введем новую независимую переменную R, которая характеризует благосостояние потребителей:

Q, = a0 + ai X Pt + a2 X Pt_i + eit, Q, = b0 + bi X P + b2 X Il + a3 X Rl + s2t.

Таким образом, первое уравнение данной модели является сверхидентифицированным, что не позволяет применять к его

оценке МНК и КМНК.

Определение оценок функции предложения будет проходить в несколько этапов:

i) запишем исходную модель спроса и предложения в приведенной форме:

Q = A1 + A2 хі' + A3 хр-1 + A4 хр +v1, р = B1 + B2 хIt + B3 хр-1 + B4 хЛ + v2.

Из второго уравнения приведенной формы модели можно найти расчетные значения р :

р = Д + B2 хIt + B3 хр-1 + B4 хр.

Тогда второе уравнение приведенной формы можно записать в виде:

р = р' + V 2.

 

С учетом расчетных значений р сверхидентифицированное уравнение предложения можно записать в виде:

Q' = «0 + «1 х (р + V2)+ «2 х р-1 + f1'

или

Q = «0 + «1 х р + «2 х р-1 + и^, где ии =єи +«1 хv2.

Следовательно, переменную р можно считать инструментальной переменной, так как:

а)         Р тесно коррелирует с р , потому что является линей-

ной комбинацией независимых переменных I , р - 1 и R ;

б)         р, не коррелирует со случайной составляющей и^;

с помощью обычного МНК определим коэффициенты уравнений приведенной формы модели:

Q = 43,08 + 2,151'-1,1р-1 + 0,13 R, р, = 6,02 - 0,0041,-0,15 р-1 + 0,1 R;

определим расчетные значения Р, подставив во второе уравнение приведенной формы фактические значения переменных I , р - 1 и R и добавим их к данным таблицы 5;

применим обычный метод наименьших квадратов к уравнению предложения с инструментальной переменной:

Q, = a0 + a1 X P + a2 x Pt -1 + u1l.

В результате получим оцененное структурное уравнение предложения:

Qt = 81-2,93x P + 0,45 x Pt-1.

Рассчитаем коэффициент множественной детерминации для

данного уравнения:^2 = 0,944.

Таким образом, полученное уравнение предложения на 94,4\% объясняет дисперсию зависимой переменной в общем объеме ее дисперсии.

Неизвестные коэффициенты точно идентифицированного уравнения спроса можно найти и с помощью двухшагового МНК, и с помощью косвенного МНК.

Найдем оценки структурного уравнения спроса с помощью двухшагового МНК:

Qt = b0 + b1 X P + b2 x It + a3 X Rt + є21.

Тогда

Q =-1,44 + 7,4 xP + 2,18 x It -0,6 x R + є2І.

Рассчитаем коэффициент множественной детерминации для данного уравнения:^2 = 0,872.

Таким образом, полученное с помощью ДМНК уравнение спроса на 87,2\% объясняет дисперсию зависимой переменной в общем объеме ее дисперсии.

Найдем оценки структурного уравнения спроса с помощью косвенного метода наименьших квадратов.

Выразим из второго уравнения приведенной формы модели переменную Pt - 1:

6,02   0,004      0,1 1

P і =-   '— I, +^— R + — P =

t-1    0,5     0,15   t   0,15 v   0,15 t = 40 - 0,026It +0,67 R +6,7 Pt.

Подставим данное выражение в первое уравнение приведенной формы модели вместо Pt - 1:

Qt =-1,44 + 2,181, -0,607R-7,37Pt.

Таким образом, оценки структурного уравнения спроса, полученные разными методами, абсолютно одинаковы.

Запишем оцененную структурную форму модели: Q, = 81-2,93xP| +0,45 x P-1, Qt =-1,44 + 2,18It -0,607R -7,37Pt.

 

Страница: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 |