Имя материала: Эконометрика

Автор: Кремер Н.Ш.

7.5. устранение гетероскедастичности

Пусть рассматривается регрессионная модель (4.2)

Y= Ар+є (7.25)

или

п.

(7.25')

Будем считать, что модель (7.25) гетероскедастич-н а, т. е. дисперсии возмущений (ошибок) а? (/ = 1,...,я) не равны между собой, и сами возмущения є/ и    (к = 1,..., п) не кор-релированы. Это означает, что ковариационная матрица вектора возмущений ]Г £ = Q — диагональная:

 

 

Q =

0

0 0

 

 

(7.26)

 

0 0

>nj

 

Если дисперсии возмущений of (z = l,...,w) известны, то гете-

роскедастичность легко устраняется. В самом деле, будем рассматривать в качестве /-го наблюдения зависимой Y и объясняющих переменных Xj(j = 1,...,р) нормированные по а, переменные, т. е.

Z = Y/ai9 Vj=Xj/oi9 /=1,..., п.

Тогда модель (7.25) примет вид:

р

*/=P'o+ZPyv//+vM   ' = Ь..., <7-27)

ГДЄ (Зо =(30/СУ/, V/= Є//СТ/.

Очевидно, дисперсия Ду/)=1, т. е. модель (7.27) гомоскедас-тична. При этом ковариационная матрица становится

единичной, а сама модель (7.27) — классической.

Применяя к линейной регрессионной модели (7.25) теорему Айткена (§ 7.2), наиболее эффективной оценкой вектора р является оценка (7.7):

 

Ь* = (Х'П-1Х)-1 X'QY. (7.28)

Применение формулы (7.28) для отыскания параметра р, т. е. обобщенный метод наименьших квадратов для модели с гете-роскедастичностъю, когда ковариационная матрица возмущений ^]e=Q есть диагональная матрица (7.26), называется взвешенным методом наименьших квадратов.

Применяя обычный метод наименьших квадратов (§ 4.2), неизвестные параметры регрессионной модели находим, миними-

п

зируя остаточную сумму квадратов S = e,e = ^(yi-yi) , исполь-

/=і

■iy,-y,f О/

зуя обобщенный метод (§ 7.2), — минимизируя S = e'Cl~le9 и, наконец, в частном случае, применяя взвешенный метод наимень-

1

ших квадратов, — минимизируя S = ]Г

«Взвешивая» каждый остаток et = yt - yt с помощью коэффициента 1/ст/, мы добиваемся равномерного вклада остатков в общую сумму, что приводит в конечном счете к получению наиболее эффективных оценок параметров модели.

На практике, однако, значения а, почти никогда не бывают известны. В этом случае при нахождении переменных в формуле (7.27) значения а, следует заменить их состоятельными оценками а,.

Если исходить из предположения (7.20), то состоятельными оценками а} являются объясненные (прогнозные) значения ё}

регрессии (7.21).

Оценка параметров регрессионной модели взвешенным методом наименьших квадратов реализована в большинстве компьютерных пакетов. Покажем ее проведение при использовании пакета «Econometric Views».

Сначала следует применить обычный метод наименьших квадратов к модели (7.25), затем надо найти регрессию квадратов остатков на квадратичные функции регрессоров, т. е. найти уравнение регрессии (7.21), где /— квадратичная функция, аргументами которой являются квадраты значений регрессоров и их попарные произведения. После чего следует вычислить прогнозные значения ё} по полученному уравнению регрессии и

получить набор весов («weight»): а, = д/і^~. Затем надо ввести новые переменные  X*j = Xj /б; (j = l9...9p   К,- = Yt /а,-  и найти

уравнение £ = Х*Ъ. Полученная при этом оценка Ь* и есть

оценка взвешенного метода наименьших квадратов исходного уравнения (7.25).

► Пример 7.4. По данным примера 7.1 оценить параметры регрессионной модели Y по Хи Х2 взвешенным методом наименьших квадратов.

Решение. В примере 7.2 к модели был применен обычный метод наименьших квадратов. При этом получен ряд остатков е(.

Оценим теперь регрессию вида

ЄЇ = У0 + Yl*l2 + У2*2 + УЗ*1*2 •

Применяя обычный метод наименьших квадратов, получим уравнение1:

1 Здесь и далее в скобках под коэффициентами регрессии указываются их средние квадратические (стандартные) отклонения.

ё} = 3,6 + 0,3*? + 0,1х| + 0,05ххх2. (0,1)  (0,07) (0,1)

Для применения взвешенного метода наименьших квадратов рассмотрим величины а, = <y[ef и введем новые переменные

*.у=4*- 0" = 1,2), Yu=?h   (i = l        150).

а, а,-

Оценивая регрессию У„ по ХтХ и Х*2 получаем уравнение:

j>, = -6,21 + 3,58х+1 + 0,53х*2,

(2,18) (0,58) (0,08)

что и дает нам оценки взвешенного метода наименьших квадратов.

Если применить тест Уайта к последнему уравнению, получим F = 0,76 < Fo5o5;2;i47 = 3,06,  откуда следует, что гетероскедастич-

ность можно считать устраненной. ►

На практике процедура устранения гетероскедастичности может представлять технические трудности. Дело в том, что реально в формулах (7.26) присутствуют не сами стандартные отклонения ошибок регрессии, а лишь их оценки. А это значит, что модель (7.27) вовсе не обязательно окажется гомоскедастичной.

Причины этого очевидны. Во-первых, далеко не всегда оказывается справедливым само предположение (7.21) или (7.23). Во-вторых, функция /в формуле (7.21) или (7.23), вообще говоря, не обязательно степенная (и уж тем более, не обязательно квадратичная), и в этом случае ее подбор может оказаться далеко не столь простым.

Другим недостатком тестов Уайта и Глейзера является то, что факт невыявления ими гетероскедастичности, вообще говоря, не означает ее отсутствия. В самом деле, принимая гипотезу #о, мы принимаем лишь тот факт, что отсутствует определенного вида зависимость дисперсий ошибок регрессии от значений регрессоров.

Так, если применить к рассматриваемой ранее модели зависимости дохода Y от разряда X взвешенный метод наименьших квадратов, используя уравнение (7.23) с линейной функцией /, то получим уравнение j> = 196,47 + 50,6jc и коэффициент детерминации R2 = 0,94.

Если теперь использовать тест Глейзера для проверки отсутствия гетероскедастичности «взвешенного» уравнения, то соответствующая гипотеза подтвердится.

Однако, если для этой же цели применить тест Голдфелда—

33 100

Квандта, то получим: ]Ге? =26,49, ]Ге? =49,03, F= 1,85.

/=1 /=68

Сравнивая с /7о.05:32:32=1?84, делаем вывод о том, что на 5\%-ном уровне значимости гипотеза об отсутствии гетероскедастичности все же отвергается, хотя и вычисленное значение /"-статистики очень близко к критическому.

Однако, даже если с помощью взвешенного метода наи-

меньших квадратов не удается устранить гетероскедастичность,

ковариационная матрица            оценок параметров регрессии р

все же может быть состоятельна оценена (напомним, что именно несостоятельность стандартной оценки дисперсий и кова-риаций р является наиболее неприятным последствием гетероскедастичности, в результате которого оказываются недостоверными результаты тестирования основных гипотез). Соответствующая оценка имеет вид:

± =n(xX)-lU±e?xA(X'xy

 

Стандартные отклонения, вычисленные по этой формуле, называются стандартными ошибками в форме Уайта.

Так, для рассматриваемого примера зависимости дохода Y от разряда X стандартная ошибка в форме Уайта равна 2,87, в то время как ее значение, рассчитанное с помощью обычного метода наименьших квадратов, равно 2,96.

 

Страница: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 |