Имя материала: Эконометрика

Автор: Кремер Н.Ш.

9.6. трехшаговый метод наименьших квадратов

Наиболее эффективная процедура оценивания систем регрессионных уравнений сочетает метод одновременного оценивания и метод инструментальных переменных. Соответствующий метод называется трехшаговым методом наименьших квадратов. Он заключается в том, что на первом шаге к исходной модели (9.2) применяется обобщенный метод наименьших квадратов с целью устранения корреляции случайных членов. Затем к полученным уравнениям применяется двухшаговый метод наименьших квадратов.

Очевидно, что если случайные члены (9.2) не коррелируют, трехшаговый метод сводится к двухшаговому, в то же время, если матрица В — единичная, трехшаговый метод представляет собой процедуру одновременного оценивания уравнений как внешне не связанных.

Применим трехшаговый метод к рассматриваемой модели (9.24):

ai=19,31;   Pi=l,77;   а2=19,98;  р2=0,05; у=1,4. (6,98)       (0,03)      (4,82)       (0,08) (0,016)

Так как коэффициент р2 незначим, то уравнение зависимости У от X имеет вид:

у =16,98 + 1,4х

Заметим, что оно практически совпадает с уравнением (9.23).

Как известно, очищение уравнения от корреляции случайных членов — процесс итеративный. В соответствии с этим при использовании трехшагового метода компьютерная программа запрашивает число итераций или требуемую точность. Отметим важное свойство трехшагового метода, обеспечивающего его наибольшую эффективность.

При достаточно большом числе итераций оценки трехшагового метода наименьших квадратов совпадают с оценками максимального правдоподобия.

Как известно, оценки максимального правдоподобия на больших выборках являются наилучшими.

 

Страница: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 |