Имя материала: Эконометрика

Автор: Кремер Н.Ш.

1.5. система одновременных уравнений

До сих пор мы рассматривали эконометрические модели, задаваемые уравнениями, выражающими зависимую (объясняемую) переменную через объясняющие переменные. Однако реальные экономические объекты, исследуемые с помощью эко-нометрических методов, приводят к расширению понятия эко-нометрической модели, описываемой системой регрессионных уравнений и тождеств1.

1 В отличие от регрессионных уравнений тождества не содержат подлежащих оценке параметров модели и не включают случайной составляющей.

Особенностью этих систем является то, что каждое из уравнений системы, кроме «своих» объясняющих переменных, может включать объясняемые переменные из других уравнений. Таким образом, мы имеем не одну зависимую переменную, а набор зависимых (объясняемых) переменных, связанных уравнениями системы. Такую систему называют также системой одновременных уравнений, подчеркивая тот факт, что в системе одни и те же переменные одновременно рассматриваются как зависимые в одних уравнениях и независимые в других.

Системы одновременных уравнений наиболее полно описывают экономический объект, содержащий множество взаимосвязанных эндогенных (формирующихся внутри функционирования объекта) и экзогенных (задаваемых извне) переменных. При этом в качестве эндогенных и экзогенных могут выступать лаговые (взятые в предыдущий момент времени) переменные.

Классическим примером такой системы является модель спроса Qd и предложения Qs (см. § 9.1), когда спрос на товар определятся его ценой Р и доходом потребителя /, предложение товара — его ценой Р и достигается равновесие между спросом и предложением:

 

Qd=Qs.

В этой системе экзогенной переменной выступает доход потребителя /, а эндогенными — спрос (предложение) товара Qd = Q»• = Q и цена товара (цена равновесия) Р.

В другой модели спроса и предложения в качестве объясняющей предложение Qf переменной может быть не только цена товара Р в данный момент времени /, т.е. Рь но и цена товара в предыдущий момент времени Pt- ь т.е. лаговая эндогенная переменная:

й'=Р4+Р5^+Рб^-1+Є2.

Обобщая изложенное, можно сказать, что эконометринеская модель позволяет объяснить поведение эндогенных переменных в зависимости от значений экзогенных и лаговых эндогенных переменных (иначе — в зависимости от предопределенных, т.е. заранее определенных, переменных).

Завершая рассмотрение понятия эконометрической модели, следует отметить следующее. Не всякая экономико-математическая модель, представляющая математико-статистическое описание исследуемого экономического объекта, может считаться эконометрической. Она становится эконометрической только в том случае, если будет отражать этот объект на основе характеризующих именно его эмпирических (статистических) данных.

 

Страница: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 |