Имя материала: Эконометрика

Автор: А.И.Орлов

11.5.эконометрика в контроллинге

 

Контроллеру и сотрудничающему с ним эконометрику нужна разнообразная экономическая и управленческая информация, не менее нужны удобные инструменты ее анализа. Следовательно, информационная поддержка контроллинга необходима для успешной работы контроллера. Без современных компьютерных инструментов анализа и управления, основанных на продвинутых эконометрических и экономико-математических методах и моделях, невозможно эффективно принимать управленческие решения. Недаром специалисты по контроллингу большое внимание уделяют проблемам создания, развития и применения компьютерных систем поддержки принятия решений. Высокие статистические технологии и эконометрика - неотъемлемые части любой современной системы поддержки принятия экономических и управленческих решений.

Важная часть эконометрики - применение высоких статистических технологий к анализу конкретных экономических данных. Такие исследования зачастую требуют дополнительной теоретической работы по "доводке" статистических технологий применительно к конкретной ситуации. Большое значение для контроллинга имеют не только общие методы, но и конкретные эконометрические модели, например, вероятностно-статистические модели тех или иных процедур экспертных оценок (глава 12) или эконометрики качества (глава 13), имитационные модели деятельности организации, прогнозирования в условиях риска (глава 14). И конечно, такие конкретные применения, как расчет и прогнозирование индекса инфляции. Сейчас уже многим специалистам ясно, что годовой бухгалтерский баланс предприятия может быть использован для оценки его финансово-хозяйственной деятельности только с привлечением данных об инфляции. Различные области экономической теории и практики в настоящее время еще далеко не согласованы. При оценке и сравнении инвестиционных проектов принято использовать такие характеристики, как чистая текущая стоимость, внутренняя норма доходности, основанные на введении в рассмотрение изменения стоимости денежной единицы во времени (это осуществляется с помощью дисконтирования). А при анализе финансово-хозяйственной деятельности организации на основе данных бухгалтерской отчетности изменение стоимости денежной единицы во времени по традиции не учитывают.

Специалисты по контроллингу должны быть вооружены современными средствами информационной поддержки, в том числе средствами на основе высоких статистических технологий и эконометрики. Очевидно, преподавание должно идти впереди практического применения. Ведь как применять то, чего не знаешь?

Статистические технологии применяют для анализа данных двух принципиально различных типов. Один из них - это результаты измерений (наблюдений, испытаний, анализов, опытов и др.) различных видов, например, результаты управленческого или бухгалтерского учета, данные Госкомстата и др. Короче, речь идет об объективной информации. Другой - это оценки экспертов, на основе своего опыта и интуиции делающих заключения относительно экономических явлений и процессов. Очевидно, это -субъективная информация. В стабильной экономической ситуации, позволяющей рассматривать длинные временные ряды тех или иных экономических величин, полученных в сопоставимых условиях, данные первого типа вполне адекватны. В быстро меняющихся условиях приходятся опираться на экспертные оценки. Такая новейшая часть эконометрики, как статистика нечисловых данных, была создана как ответ на запросы теории и практики экспертных оценок (см. главы 8 и 12).

Для решения каких экономических задач может быть полезна эконометрика? Практически для всех, использующих конкретную информацию о реальном мире. Только чисто абстрактные, отвлеченные от реальности исследования могут обойтись без нее. В частности, эконометрика необходима для прогнозирования, в том числе поведения потребителей, а потому и для планирования. Выборочные исследования, в том числе выборочный контроль, основаны на эконометрике. Но планирование и контроль - основа контроллинга. Поэтому эконометрика - важная составляющая инструментария контроллера, воплощенного в компьютерной системе поддержки принятия решений. Прежде всего оптимальных решений, которые предполагают опору на адекватные эконометрические модели. В производственном менеджменте это может означать, например, использование моделей экстремального планирования эксперимента (судя по накопленному опыту их практического использования, такие модели позволяют повысить выход полезного продукта на 30-300\%).

Высокие статистические технологии в эконометрике предполагают адаптацию применяемых методов к меняющейся ситуации. Например, параметры прогностического индекса меняются вслед за изменением характеристик используемых для прогнозирования величин. Таков метод экспоненциального сглаживания. В соответствующем алгоритме расчетов значения временного ряда используются с весами. Веса уменьшаются по мере удаления в прошлое. Многие методы дискриминантного анализа основаны на применении обучающих выборок. Например, для построения рейтинга надежности банков можно с помощью экспертов составить две обучающие выборки - надежных и ненадежных банков. А затем с их помощью решать для вновь рассматриваемого банка, каков он - надежный или ненадежный, а также оценивать его надежность численно, т.е. вычислять значение рейтинга.

Один из способов построения адаптивных эконометрических моделей - нейронные сети (см., например, монографию [23]). При этом упор делается не на формулировку адаптивных алгоритмов анализа данных, а - в большинстве случаев - на построение виртуальной адаптивной структуры. Термин "виртуальная" означает, что "нейронная сеть" - это специализированная компьютерная программа, "нейроны" используются лишь при общении человека с компьютером. Методология нейронных сетей идет от идей кибернетики 1940-х годов. В компьютере создается модель мозга человека (весьма примитивная с точки зрения физиолога). Основа модели - весьма простые базовые элементы, называемые нейронами. Они соединены между собой, так что нейронные сети можно сравнить с хорошо знакомыми экономистам и инженерам блок-схемами. Каждый нейрон находится в одном из заданного множества состояний. Он получает импульсы от соседей по сети, изменяет свое состояние и сам рассылает импульсы. В результате состояние множества нейтронов изменяется, что соответствует проведению эконометрических вычислений.

Нейроны обычно объединяются в слои (как правило, два-три). Среди них выделяются входной и выходной слои. Перед началом решения той или иной задачи производится настройка. Во-первых, устанавливаются связи между нейронами, соответствующие решаемой задаче. Во-вторых, проводится обучение, т.е. через нейронную сеть пропускаются обучающие выборки, для элементов которых требуемые результаты расчетов известны. Затем параметры сети модифицируются так, чтобы получить максимальное соответствие выходных значений заданным величинам.

С точки зрения точности расчетов (и оптимальности в том или ином эконометрическом смысле) нейронные сети не имеют преимуществ перед другими адаптивными эконометрическими системами. Однако они более просты для восприятия. Надо отметить, что в эконометрике используются и модели, промежуточные между нейронными сетями и "обычными" системами регрессионных уравнений (одновременных и с лагами). Они тоже используют блок-схемы, как, например, универсальный метод моделирования связей экономических факторов ЖОК (этот метод описан в работе [24]).

Заметное место в математико-компьютерном обеспечении принятия решений в контроллинге занимают методы теории нечеткости (по-английски - fuzzy theory, причем термин fuzzy переводят на русский язык по-разному: нечеткий, размытый, расплывчатый, туманный, пушистый и др.). Начало современной теории нечеткости положено работой Л.А. Заде 1965г., хотя истоки прослеживаются со времен Древней Греции (об истории теории нечеткости см., например, книгу [12]). Это направление прикладной математики в последней трети XX в. получило бурное развитие. К настоящему времени по теории нечеткости опубликованы тысячи книг и статей, издается несколько международных журналов (половина - в Китае и Японии), постоянно проводятся международные конференции, выполнено достаточно много как теоретических, так и прикладных научных работ, практические приложения дали ощутимый технико-экономический эффект.

Основоположник рассматриваемого научного направления Лотфи А. Заде рассматривал теорию нечетких множеств как аппарат анализа и моделирования гуманистических систем, т.е. систем, в которых участвует человек. Его подход опирается на предпосылку о том, что элементами мышления человека являются не числа, а элементы некоторых нечетких множеств или классов объектов, для которых переход от "принадлежности" к "непринадлежности" не скачкообразен, а непрерывен. В настоящее время методы теории нечеткости используются почти во всех прикладных областях, в том числе при управлении качеством продукции и технологическими процессами.

Нечеткая математика и логика - мощный элегантный инструмент современной науки, который на Западе и на Востоке (в Японии, Китае, Корее) можно встретить в программном обеспечении сотен видов изделий - от игрушек и бытовых видеокамер до систем управления предприятиями. В России он был достаточно хорошо известен с начала 1970-х годов. Однако первая монография российского автора по теории нечеткости [12] была опубликована лишь в 1980 г. В дальнейшем проводившиеся раз в год всесоюзные конференции собирали около 100 участников - по мировым меркам немного. В настоящее время интерес к теории нечеткости среди экономистов и менеджеров растет.

При изложении теории нечетких множеств обычно не подчеркивается связь с вероятностными моделями. Между тем еще в середине 1970-х годов установлено (цикл соответствующих теорем приведен, в частности, в монографии [12], но это отнюдь не первая публикация), что теория нечеткости в определенном смысле сводится к теории случайных множеств, хотя эта связь и имеет, возможно, лишь теоретическое значение. В США подобные работы появились лет на пять позже.

Профессионалу в области контроллинга полезны многочисленные интеллектуальные инструменты анализа данных, относящиеся к высоким статистическим технологиям и эконометрике.

 

Цитированная литература

 

1.         Корнилов СГ. Накопление ошибки первого рода при повторной проверке

статистических гипотез. Регламент повторных проверок. // Заводская лаборатория. 1996.

T.62.N0.5.C. 45-51.

Камень Ю.Э., Камень Я.Э., Орлов А.И. Реальные и номинальные уровни значимости в задачах проверки статистических гипотез. // Заводская лаборатория. 1986. Т.52. No.12. С.55-57.

Налимов В.В. Применение математической статистики при анализе вещества. -М.:Физматгиз,1960. - 430 с.

Орлов А.И. Распространенная ошибка при использовании критериев Колмогорова и омега-квадрат. // Заводская лаборатория. 1985. Т.51. No.l. С.60-62.

Большее Л.Н., Смирнов Н.В. Таблицы математической статистики. Изд.3-е.- М.: Наука, 1983. -416 с.

Орлов А.И.О современных проблемах внедрения прикладной статистики и других статистических методов. // Заводская лаборатория. 1992. Т.58. No.l. С.67-74.

Орлов А.И. Некоторые вероятностные вопросы теории классификации. - В сб.: Прикладная статистика. Ученые записки по статистике, т.45. - М.: Наука, 1983. С. 166-179.

Никитина Е.П., Фрейдлина В.Д., Ярхо А.В. Коллекция определений термина "статистика" / Межфакультетская лаборатория статистических методов. Вып.37. - М.: Изд-во Московского государственного университета им. М.В. Ломоносова, 1972. - 46 с.

Орлов А.И. Что дает прикладная статистика народному хозяйству? // Вестник статистики. - 1986. - No.8. - С.52-56.

Орлов А.И. Сертификация и статистические методы (обобщающая статья). // Заводская лаборатория. - 1997. - Т.63. - No.3. - С.55-62.

11.       Контроллинг в бизнесе. Методологические и практические основы построения

контроллинга в организациях / A.M. Карминский, Н.И. Оленев, А.Г. Примак, С.Г.Фалько.

М.: Финансы и статистика, 1998. - 256 с.

 

Орлов А. И. Задачи оптимизации и нечеткие переменные. - М.: Знание, 1980.- 64 с.

The teaching of statistics / Studies in mathematics education. Vol.7. - Paris, UNESCO, 1989.

258 pp.

Ермаков СМ. Метод Монте-Карло и смежные вопросы. - М.: Наука, 1975. - 471 с.

Ермаков СМ., Михайлов Г.А. Статистическое моделирование. - М.: Наука, 1982. - 296 с.

Иванова И.М. Случайные числа и их применения. - М.: Финансы и статистика, 1984. -111с.

Ермаков СМ. О датчиках случайных чисел. // Заводская лаборатория. 1993. Т.59. No.7. С.48-50.

Неуймин Я.Г. Модели в науке и технике. История, теория, практика. - Л.: Наука, 1984.

190 с.

Моисеев Н.Н. Математические задачи системного анализа. - М.: Наука, 1981. - 488 с.

 

Нейлор Т. Машинные имитационные эксперименты с моделями экономических систем. - М.: Мир, 1975. - 500 с.

Эфрон Б. Нетрадиционные методы многомерного статистического анализа. - М.: Финансы и статистика, 1988. - 263 с.

Орлов А.И. О реальных возможностях бутстрепа как статистического метода. // Заводская лаборатория. 1987. Т.53. No.10. С.82-85.

Бэстенс Д.Э., Берт В.М. ван дер, Вуд Д. Нейронные сети и финансовые рынки: принятие решений в торговых операциях. - М.: ТВП, 1998.

Орлов А.И., Жихарев В.Н., Кольцов В.Г. Новый эконометрический метод "ЖОК" оценки результатов взаимовлияний факторов в инженерном менеджменте // Проблемы технологии, управления и экономики / Под общей редакцией к. э. н. Пайкова В.А. 4.1. Краматорск: Донбасская государственная машиностроительная академия, 1999. С.87-89.

Страница: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 |