Имя материала: Информатика для юристов и экономистов

Автор: Сергей Витальевич Симонович

3.1. понятие и функции операционной системы

 

Диалог с компьютером

Существует два режима работы с компьютером. Первый режим называется пакетным, а второй — диалоговым. Если мы посмотрим, как Чарльз Бэббидж планировал использовать свою Аналитическую машину, то увидим, что он рассчитывал на пакетный режим. Сначала на «складе» устанавливаются рычаги и шестерни в такое положение, которое соответствует исходным данным. Потом в «мельницу» закладывается пакет перфорированных карточек, отверстия которых соответствуют запланированным командам, после чего машина приводится в действие. Она работает, пока все команды из пакета не будут выполнены. По окончании работы состояние исполнительных механических органов покажет результат.

Примерно так же работали и первые электронные компьютеры. Сначала в их оперативную память вводили программы (последовательности команд). Затем в компьютер вводили данные, после чего компьютер запускали. Он работал до тех пор, пока не исполнялась последняя команда, а затем выключался. Результат работы находили в его оперативной памяти и/или в регистрах процессора.

Такую работу с компьютером трудно назвать удобной. В частности, во время выполнения задачи компьютер был недоступен для внешнего управления. Единственным возможным управляющим воздействием было прерывание текущей работы путем выключения компьютера.

Диалоговый режим работы гораздо более прогрессивен. В этом режиме компьютер находится в непосредственном взаимодействии с пользователем и техническими устройствами. Все персональные компьютеры сегодня работают в диалоговом режиме.

Возможность диалоговой работы с компьютером основана на прерываниях. Каждый процессор имеет так называемую систему прерываний. Получив сигнал по линии прерывания, он способен приостановить текущую работу по программе, сохранить временные данные и перейти к новой программе, которую тоже можно прервать, и так далее. Завершив обработку очередного прерывания, процессор возвращается к последней прерванной задаче.

Процессор как бы все время что-то делает, но в то же время ждет внешних прерываний. Он всегда готов откликнуться на нажатие клавиши клавиатуры, на движение мыши или щелчок ее кнопки, на поступление сигналов через модем и даже на сигналы от собственных внутренних часов. Конечно, существуют такие программы, которые полностью «монополизируют» процессор и не дадут возможности воздействовать на компьютер, пока не завершат свою работу, но таких программ меньшинство. Большинство современных программ рассчитаны на диалоговый режим.

Однако для того, чтобы компьютер находился в диалоговом режиме, на нем предварительно должна работать какая-то программа (а точнее говоря, система программ), которая обеспечит возможность прерывания процессора, распределит ресурсы компьютера между всеми прикладными программами, обеспечит взаимодействие разных устройств. Эта система программ должна организовать регулярный опрос клавиатуры, мыши и других устройств, с помощью которых пользователь общается с компьютером. Она должна также проследить, чтобы прикладные программы не монополизировали работу процессора, и проконтролировать, чтобы разные программы не перепутали свои данные, хранящиеся в оперативной памяти. Такая система программ называется операционной системой.

На самом деле, мы привели лишь ничтожную долю функций, которые выполняет операционная система, — их гораздо больше, и ниже мы их рассмотрим. Но если спросить, в чем заключается основная функция операционной системы, то можно сказать, что это обеспечение диалога между человеком и компьютером. Без операционных систем с компьютерами могли бы работать только очень квалифицированные специалисты, как это и было пятьдесят лет назад.

Когда мы нажимаем кнопку мыши и видим, что компьютер выполняет какие-то действия, то этим мы обязаны операционной системе. Она находится в режиме постоянной готовности к внешним событиям. Событий, обрабатываемых операционной системой, великое множество. Среди них события, вызываемые пользователем, программами, оборудованием. Если принтер выдает сигнал о том, что у него в лотке кончилась бумага, для процессора это сигнал, а для операционной системы — событие. Процессор ничего не знает о таких внешних устройствах, как принтер, и не знает, что делать с их сигналами. В свою очередь операционная система знает, что ей делать при наступлении тех или иных событий. В частности, она может вызвать функцию драйвера принтера, предназначенную для остановки печати, и может открыть на экране сообщение, адресованное пользователю, с описанием проблемы.

Человек воспринимает постоянную готовность операционной системы к обслуживанию событий как диалоговый режим работы. Она как бы постоянно предлагает создать событие, и мы этим пользуемся. Основные средства для создания событий — это клавиатура и мышь, но к компьютеру можно подключить и другие устройства. При установке они регистрируются операционной системой, и она настраивается на обработку событий, связанных с ними. Так благодаря операцио-ной системе компьютер не только готов к диалогу с пользователем, но способен развиваться и совершенствоваться.

Операционная система представляет комплекс системных и служебных программных средств. С одной стороны, она опирается на базовое программное обеспечение компьютера, входящее в его систему BIOS (базовая система ввода-вывода), с другой стороны, она сама является опорой для программного обеспечения более высоких уровней — прикладного и служебного. Приложениями конкретной операционной системы принято называть программы, предназначенные для работы под управлением данной системы.

Основная функция всех операционных систем — посредническая. Она заключается в обеспечении нескольких видов интерфейса:

• между пользователем и программно-аппаратными средствами компьютера (интерфейс пользователя);

• между программным и аппаратным обеспечением (аппаратно-программный интерфейс);

• между разными видами программного обеспечения (программный интерфейс).

Даже для одной аппаратной платформы, например такой, как IBM PC, существует несколько операционных систем. Различия между ними рассматривают в двух категориях: внутренние и внешние. Внутренние различия характеризуются методами реализации основных функций. Внешние различия определяются наличием и доступностью приложений данной системы, необходимых для удовлетворения технических требований, предъявляемых к конкретному рабочему месту.

 

Виды интерфейсов пользователя

Интерфейс командной строки. По реализации интерфейса пользователя различают неграфические и графические операционные системы. Неграфические операционные системы реализуют интерфейс командной строки. Основным устройством управления в данном случае является клавиатура. Управляющие команды вводят в поле командной строки, где их можно и редактировать. Исполнение команды начинается после ее утверждения, например нажатием клавиши ENTER. Для компьютеров платформы IBM PC интерфейс командной строки обеспечивается семейством операционных систем под общим названием MS-DOS (версии от MS-DOS 1.0 до MS-DOS 6.2).

Графический интерфейс. Графические операционные системы реализуют более сложный тип интерфейса, в котором в качестве органа управления кроме клавиатуры может использоваться мышь или иное устройство позиционирования. Работа с графической операционной системой основана на взаимодействии активных и пассивных экранных элементов управления.

Активные и пассивные элементы управления. В качестве активного элемента управления выступает указатель мыши — графический объект, перемещение которого на экране синхронизировано с перемещением мыши.

В качестве пассивных элементов управления выступают графические элементы управления приложений (экранные кнопки, значки, переключатели, флажки, раскрывающиеся списки, строки меню и многие другие).

Характер взаимодействия между активными и пассивными элементами управления выбирает сам пользователь. В его распоряжении приемы наведения указателя мыши на элемент управления, щелчки кнопками мыши и другие средства.

 

Обеспечение автоматического запуска

Все операционные системы обеспечивают свой автоматический запуск. Для дисковых операционных систем в специальной (системной} области диска создается запись программного кода. Обращение к этому коду выполняют программы, находящиеся в базовой системе ввода-вывода (BIOS). Завершая свою работу, они дают команду на загрузку и исполнение содержимого системной области диска.

Недисковые операционные системы характерны для специализированных вычислительных систем, в частности для компьютеризированных устройств автоматического управления. Математическое обеспечение, содержащееся в микросхемах ПЗУ таких компьютеров, можно условно рассматривать как аналог операционной системы. Ее автоматический запуск осуществляется аппаратно. При подаче питания процессор обращается к фиксированному физическому адресу ПЗУ (его можно изменять аппаратно с использованием логических микросхем), с которого начинается запись программы инициализации операционной системы.

 

Организация файловой системы

Понятие цилиндра. Все современные дисковые операционные системы обеспечивают создание файловой системы, предназначенной для хранения данных на дисках и обеспечения доступа к ним. Принцип организации файловой системы зависит от операционной системы. Наиболее распространенный тип — табличный.

Во-первых, диск представляется как набор поверхностей. У гибких дисков их всего две (верхняя и нижняя), но жесткие диски — это на самом деле «этажерки», состоящие из нескольких пластин, поэтому количество поверхностей у них больше.

Во-вторых, каждая поверхность диска разделяется на кольцевые дорожки, а каждая дорожка — на секторы. Размеры секторов фиксированы и равны 512 байт.

Чтобы найти на диске тот или иной файл, надо знать, где он расположен, то есть, нужен его адрес. Проще всего было бы записать адрес файла в виде номера поверхности, номера дорожки и номера сектора, но на самом деле это выполняется не совсем так. Дело в том, что у каждой поверхности есть своя головка для чтения/ записи, и эти головки перемещаются не порознь, а одновременно. То есть, если, например, пятая головка подводится к тридцатой дорожке, то и все головки подводятся к своим тридцатым дорожкам. Поэтому вместо понятия дорожки используют понятие цилиндра. Цилиндр — это совокупность всех дорожек, имеющих одинаковые номера, то есть равноудаленных от оси вращения. Поэтому реально местоположение файла на жестком диске определяется номером цилиндра, номером поверхности и номером сектора.

Понятие кластера. Сектор — это наименьшая единица хранения данных, но для адресации она используется далеко не во всех файловых системах. Для этого она слишком мала. Такие операционные системы, как MS-DOS, Windows, OS/2, используют для адресации более крупную единицу хранения, называемую кластером. Кластер — это группа соседних секторов. Размер кластера зависит от размера жесткого диска. Чем больше диск, тем большим назначается размер кластера. Типовые значения: 8,16, 32 или 64 сектора.

Данные о том, в каком кластере диска начинается тот или иной файл, хранятся в системной области диска в специальных таблицах размещения файлов (Е4Г-табли-цах). Поскольку нарушение .РЛГ-таблицы приводит к невозможности воспользоваться данными, записанными на диске, к ней предъявляются особые требования надежности, и она существует в двух экземплярах, идентичность которых регулярно контролируется средствами операционной системы.

Операционные системы MS-DOS, OS/2, Windows 95 и Windows NT реализуют 16-разрядные поля в таблицах размещения файлов. Такая файловая система называется FAT 16. Она позволяет разместить в .РЛГ-таблицах не более 65 536 записей (216) о местоположении данных. Из-за этого ограничения данные операционные системы не позволяют работать с жесткими дисками размером более 2 Гбайт.

В настоящее время операционные системы Windows 98, Windows 2000 и Windows Millenium обеспечивают более совершенную файловую систему — .Е4Г32 с 32-разрядными полями в таблице размещения файлов. Это позволяет работать с любыми современными жесткими дисками.

 

Обслуживание файловой структуры

Несмотря на то что данные о местоположении файлов хранятся в табличной структуре, пользователю они представляются в виде иерархической структуры — людям так удобнее, а все необходимые преобразования берет на себя операционная система. К функции обслуживания файловой структуры относятся следующие операции, происходящие под управлением операционной системы:

• создание файлов и присвоение им имен;

• создание каталогов (папок) и присвоение им имен;

• переименование файлов и каталогов (папок);

• копирование и перемещение файлов между дисками компьютера и между каталогами (папками)одного диска;

• удаление файлов и каталогов (папок);

• навигация по файловой структуре с целью доступа к заданному файлу, каталогу (папке);

• управление атрибутами файлов.

Создание и именование файлов

Файл - это именованная последовательность байтов произвольной длины. Поскольку из этого определения вытекаёт, что файл может иметь нулевую длйну, то фактически создание файла состоит в присвоении ему имени и регистрации его в файловой системе — это одна из функций операционной системы. Даже когда мы создаем файл, работая в какой-то прикладной программе, в общем случае для этого привлекаются средства операционной системы.

По способам именования файлов различают «короткое» и «длинное» имя. До появления операционной системы Windows 95 общепринятым способом именования файлов на компьютерах IBM PC было соглашение 8.3. Согласно этому соглашению, принятому в MS-DOS, имя файла состоит из двух частей: собственно имени и расширения имени. На имя файла отводится 8 символов, а на его расширение — 3 символа. Имя от расширения отделяется точкой. Как имя, так и расширение могут включать только алфавитно-цифровые символы латинского алфавита.

Соглашение 8.3 не является стандартом, и потому в ряде случаев отклонения от правильной формы записи допускаются как операционной системой, так и ее приложениями. Так, например, в большинстве случаев система «не возражает» против использований некоторых специальных символов (восклицательный знак, символ подчеркивания, дефис, тильда и т. п.), а некоторые версии MS-DOS даже допускают использование в именах файлов символов русского и других алфавитов. Сегодня имена файлов, записанные в соответствии с соглашением 8.3, считаются «короткими».

Основным недостатком «коротких» имен является их низкая содержательность. Далеко не всегда удается выразить несколькими символами характеристику файла, поэтому с появлением операционной системы Windows 95 было введено понятие «длинного» имени. Такое имя может содержать до 256 символов. Этого вполне достаточно для создания содержательных имен файлов. «Длинное» имя может содержать любые символы, кроме девяти специальных: /:*?"<> |. В имени разрешается использовать пробелы и несколько точек. Расширением имени считаются все символы, идущие после последней точки.

Наряду с «длинным» именем операционные системы Windows 95/98/Me/2000 создают также и короткое имя файла — оно необходимо для возможности работы с данным файлом на рабочих местах с устаревшими операционными системами.

Особенности Windows 95/98/Me/2000. Использование «длинных» имен файлов в последних операционных системах Windows имеет ряд особенностей.

1.Если «длинное» имя файла включает пробелы, то в служебных операциях его надо заключать в кавычки. Рекомендуется не использовать пробелы, а заменять их символами подчеркивания.

2.В корневой папке диска (на верхнем уровне иерархической файловой структуры) нежелательно хранить файлы с длинными именами — в отличие от прочих папок в ней ограничено количество единиц хранения, причем чем длиннее имена, тем меньше файлов можно разместить в корневой папке.

3.Кроме ограничения на длину имени файла (256 символов) существует гораздо более жесткое ограничение на длину полного имени файла (в него входит путь доступа к файлу, начиная от вершины иерархической структуры). Полное имя не может быть длиннее 260 символов.

4.Разрешается использовать символы любых алфавитов, в том числе и русского, но если документ готовится для передачи, с заказчиком (потребителем документа) необходимо согласовать возможность воспроизведения файлов с такими именами на его оборудовании. Если заказчик не определен, надежнее пользоваться символами английского языка.

5.Прописные и строчные буквы не различаются операционной системой. Имена Письмо.txt и письмо.txt соответствуют одному и тому же файлу. Однако символы разных регистров исправно отображаются операционной системой, и, если для наглядности надо использовать прописные буквы, это можно делать.

6.Программисты давно научились использовать расширение имени файла для передачи операционной системе, исполняющей программе или пользователю сведений о том, к какому типу относятся данные, содержащиеся в файле, и о формате, в котором они записаны. В ранних операционных системах этот факт использовался мало. В современных операционных системах любое расширение имени файла может нести информацию для операционной системы. Системы Windows 95/98/Me/2000 имеют средства для регистрации свойств типов файлов по расширению их имени, поэтому во многих случаях выбор расширения имени файла не является частным делом пользователя. Приложения этих систем предлагают выбрать только основную часть имени и указать тип файла, а соответствующее расширение имени приписывают автоматически.

 

Создание каталогов (папок)

Каталоги (папки)  важные элементы иерархической структуры, необходимые лля обеспечения удобного доступа к файлам, если файлов на носителе слишком много. Файлы объединяются в каталоги по любому общему признаку, заданному их создателем (по типу, по принадлежности, по назначению, по времени создания и т. п.). Каталоги низких уровней вкладываются в каталоги более высоких уровней и являются для них вложенными. Верхним уровнем вложеннЪсти иерархической структуры является корневой каталог диска.

Все современные операционные системы позволяют создавать каталоги. Правила присвоения имени каталогу ничем не отличаются от правил присвоения имени файлу, хотя негласно для каталогов не принято задавать расширения имен.

В иерархических структурах данных адрес объекта задается маршрутом (путем доступа), ведущим от вершины структуры к объекту. При записи пути доступа к файлу, проходящего через систему вложенных каталогов, все промежуточные каталога разделяются между собой определенным символом. Во многих операционных системах в качестве такого символа используется «» (обратная косая черта), например:

Особенности Windows 95/98/Me/2000. До появления операционной системы Windows 95 при описании иерархической файловой структуры использовался введенный выше термин каталог. С появлением этой системы был введен новый термин — папка. В том, что касается обслуживания файловой структуры носителя данных, эти термины равнозначны: каждому каталогу файлов на диске соответствует одноименная папка операционной системы. Основное отличие понятий папка и каталог проявляется не в организации хранения файлов, а в организации хранения объектов иной природы. Так, например, в последних операционных системах семейства Windows существуют специальные папки, представляющие собой удобные логические структуры, которым не соответствует ни один каталог диска.

 

Копирование и перемещение файлов

В неграфических операционных системах операции копирования и перемещения файлов выполняются вводом прямой команды в поле командной строки. При этом указывается имя команды, путь доступа к каталогу-источнику и путь доступа к каталогу-приемнику.

В графических операционных системах существуют приемы работы с устройством позиционирования, позволяющие выполнять эти команды наглядными методами.

 

Удаление файлов и каталогов (папок)

Средства удаления данных не менее важны для операционной системы, чем средства их создания, поскольку ни один носитель данных не обладает бесконечной емкостью. Существует как минимум три режима удаления данных: удаление, уничтожение и стирание, хотя операционные системы обеспечивают только два первых режима (режим надежного стирания данных можно обеспечить лишь специальными программными средствами).

Удаление файлов является временным. В операционных системах Windows 95/98/ Me/2000 оно организовано с помощью специальной папки, которая называется Корзина. При удалении файлов и папок они перемещаются в Корзину. Эта операция происходит на уровне файловой системы (изменяется только путь доступа к файлам). На уровне файловой структуры жесткого диска ничегоне происходит — файлы остаются в тех же секторах, где и были записаны.

Уничтожение файлов происходит при их удалении в операционной системе MS-DOS или при очистке Корзины в операционных системах Windows 95/98/Me/2000. В этом случае файл полностью удаляется из файловой системы, но на уровне файловой структуры диска с ним происходят лишь незначительные изменения. В таблице размещения файлов он помечается как удаленный, хотя физически остается там же, где и был. Это сделано для минимизации времени операции. При этом открывается возможность записи новых файлов в кластеры, помеченные как «свободные».

Для справки укажем, что операция стирания файлов, выполняемая специальными служебными программами, состоит именно в том, чтобы заполнить якобы свободные кластеры, оставшиеся после уничтоженного файла, случайными данными.

Поскольку даже после перезаписи данных их еще можно восстановить специальными аппаратными средствами (путем анализа остаточного магнитного гистерезиса), для надежного стирания файлов требуется провести не менее пяти актов случайной перезаписи в одни и те же сектора. Эта операция весьма продолжительна, и поскольку массовому потребителю она не нужна, то ее не включают в стандартные функции операционных систем.

 

Навигация по файловой структуре

Навигация по файловой структуре является одной из наиболее используемых функций операционной системы. Удобство этой операции часто воспринимают как удобство работы с операционной системой. В операционных системах, имеющих интерфейс командной строки, навигацию осуществляют путем ввода команд перехода с диска на диск или из каталога в каталог. В связи с крайним неудобством такой навигации широкое применение нашли специальные служебные программы, называемые файловыми оболочками.

Как и операционные системы, файловые оболочки бывают неграфическими и графическими. Наиболее известная неграфическая файловая оболочка для MS-DOS — диспетчер файлов Norton Commander, а роль графической файловой оболочки для MS-DOS в свое время исполняли программы Windows 1.0 и Windows 2.0, которые постепенно развились до понятия операционной среды (в версиях Windows 3.x) и далее до самостоятельной операционной системы (Windows 95).

С приемами навигации в современных графических операционных системах мы познакомимся при их изучении.

 

Управление атрибутами файлов

Кроме имени и расширения имени файла операционная система хранит для каждого файла дату его создания (изменения) и несколько флаговых величин, называемых атрибутами файла. Атрибуты — это дополнительные параметры, определяющие свойства файлов. Операционная система позволяет их контролировать и изменять; состояние атрибутов учитывается при проведении автоматических операций с файлами.

Основных атрибутов четыре:

• Только для чтения (Read only);

• Скрытый (Hidden);

• Системный (System);

• Архивный (Archive).

Атрибут Только для чтения ограничивает возможности работы с файлом. Его установка означает, что файл не предназначен для внесения изменений.

Атрибут Скрытый сигнализирует операционной системе о том, что данный файл не следует отображать на экране при проведении файловых операций. Это мера защиты против случайного (умышленного или неумышленного) повреждения файла.

Атрибутом Системный помечаются файлы, обладающие важными функциями в работе самой операционной системы. Его отличительная особенность в том, что средствами операционной системы его изменить нельзя. Как правило, большинство файлов, имеющих установленный атрибут Системный, имеют также и установленный атрибут Скрытый.

Атрибут Архивный в прошлом использовался для работы программ резервного копирования. Предполагалось, что любая программа, изменяющая файл, должна автоматически устанавливать этот атрибут, а средство резервного копирования должно его сбрасывать. Таким образом, очередному резервному копированию подлежали только те файлы, у которых этот атрибут был установлен. Современные программы резервного копирования используют другие средства для установления факта изменения файла, и данный атрибут во внимание не принимается, а его изменение вручную средствами операционной системы не имеет практического значения.

 

Управление установкой, исполнением и удалением приложений

Понятие многозадачности. Работа с приложениями составляет наиболее важную часть работы операционной системы. Это очевидно, если вспомнить, что основная функция операционной системы состоит в обеспечении интерфейса приложений с аппаратными и программными средствами вычислительной системы, а также с пользователем. С точки зрения управления исполнением приложений, различают однозадачные и многозадачные операционные системы.

Однозадачные операционные системы (например MS-DOS) передают все ресурсы вычислительной системы одному исполняемому приложению и не допускают ни параллельного выполнения другого приложения (полная многозадачность), ни его приостановки и запуска другого приложения (вытесняющая многозадачность). В то же время, параллельно с однозадачными операционными системами возможна работа специальных программ, называемых резидентными. Такие программы не опираются на операционную систему, а непосредственно работают с процессором, используя его систему прерываний.

Большинство современных графических операционных систем — многозадачные. Они управляют распределением ресурсов вычислительной системы между задачами и обеспечивают:

• возможность одновременной или поочередной работы нескольких приложений;

• возможность обмена данными между приложениями;

• возможность совместного использования программных, аппаратных, сетевых и прочих ресурсов вычислительной системы несколькими приложениями.

Вопросы надежности. От того, как операционная система управляет работой приложений, во многом зависит надежность всей вычислительной системы. Операционная система должна предоставлять возможность прерывания работы приложений по желанию пользователя и снятия сбойной задачи без ущерба для работы других приложений. При этом требование надежности операционной системы может входить в противоречие с требованием ее универсальности.

Так, например, наиболее универсальные операционные системы Windows 95 и Windows 98 могут испытывать общесистемные сбои из-за работы с приложениями, недостаточно четко соблюдающими спецификацию операционной системы. Эти операционные системы хорошо использовать на компьютерах бытового и универсального назначения. Для серверов и для компьютеров, настроенных на работу со средствами электронной цифровой подписи и занятия электронной коммерцией, их использовать не рекомендуется. Более современная версия Windows Millenium (Windows Me) также отличается универсальностью при недостаточной общей надежности, хотя в этой системе есть автоматические средства для поддержания надежности.

Операционные системы Windows NT и 05/2 обладают повышенной устойчивостью и не выходят из строя при сбое приложений, но имеют меньшую универсальность, и, соответственно, парк доступных приложений для них ограничен. Особенно критично то, что для них ограничен парк доступных драйверов устройств, а это влияет на гибкость в конфигурировании компьютерной системы.

Удачное сочетание надежности и универсальности достигнуто в операционной системе Windows 2000. Она обладает повышенной устойчивостью, как Windows NT, а по универсальности близка к Windows 98/Ме. Сегодня эта система становится основной для специализированных рабочих мест.

Вопрос надежности операционной системы особо остро стоит для программистов. В процессе отладки программ возможны многочисленные сбои из-за несовершенства их кода. При отладке «сырых» программ в Windows 95/98/Ме «сброс» или «зависание» компьютера происходит много чаще, чем в операционных системах Windows NT/2000. Поэтому общепринятой является практика, когда программа разрабатывается и отлаживается в операционной системе Windows NT/2000, а ее окончательная сборка и компиляция выполняются в Windows 95/98/Ме.

 

Установка приложений

Для правильной работы приложений на компьютере они должны пройти операцию, называемую установкой. Необходимость в установке связана с тем, что разработчики программного обеспечения не могут заранее предвидеть особенности аппаратной и программной конфигурации вычислительной системы, на которой предстоит работать их программам. Таким образом, дистрибутивный комплект (установочный пакет) программного обеспечения, как правило, представляет собой не законченный программный продукт, а полуфабрикат, из которого в процессе установки на компьютере формируется полноценное рабочее приложение. При этом осуществляется привязка приложения к существующей аппаратно-программной среде и его настройка на работу именно в этой среде.

Устаревшие операционные системы (например MS-DOS) не имеют средств для управления установкой приложений. Единственное средство, которое они предоставляют, — возможность запуска устанавливающей программы, прилагаемой к дистрибутивному комплекту. Такая установка отличается крайней простотой, но и невысокой надежностью, поскольку правильность привязки приложения к окружающей программно-аппаратной среде зависит от того, насколько разработчик устанавливающей программы сумел заранее предусмотреть возможные варианты конфигурации вычислительной системы конкретного пользователя. Современные графические операционные системы берут на себя управление установкой приложений. Они управляют распределением ресурсов вычислительной системы между приложениями, обеспечивают доступ устанавливаемых приложений к драйверам устройств вычислительной системы, формируют общие ресурсы, которые могут использоваться разными приложениями, выполняют регистрацию установленных приложений и выделенных им ресурсов.

 

Удаление приложений

Процесс удаления приложений, как и процесс установки, имеет свои особенности и может происходить под управлением вычислительной системы. В таких операционных системах, где каждое приложение самообеспечено собственными ресурсами (например в MS-DOS), его удаление не требует специального вмешательства операционной системы. Для этого достаточно удалить каталог, в котором размещается приложение, со всем его содержимым.

В операционных системах, реализующих принцип совместного использования ресурсов (например в Windows 95/98/Ме), процесс удаления приложений имеет особенности. Нельзя допустить, чтобы при удалении одного приложения были удалены ресурсы, на которые опираются другие приложения, даже если эти ресурсы были когда-то установлены вместе с удаляемым приложением. В связи с этим удаление приложений происходит под строгим контролем операционной системы. Полнота удаления и надежность последующего функционирования операционной системы и оставшихся приложений во многом зависят от корректности установки и регистрации приложений в реестре операционной системы.

 

Обеспечение взаимодействия с аппаратным обеспечением

Средства аппаратного обеспечения вычислительной техники отличаются гигантским многообразием. Существуют сотни различных моделей видеоадаптеров, звуковых карт, мониторов, принтеров, сканеров и прочего оборудования. Ни один разработчик программного обеспечения не в состоянии предусмотреть все варианты взаимодействия своей программы, например, с печатающим устройством. Гибкость аппаратных и программных конфигураций вычислительных систем поддерживается за счет того, что каждый разработчик оборудования прикладывает к нему специальные программные средства управления — драйверы. Драйверы имеют точки входа для взаимодействия с прикладными программами, а диспетчеризация обращений прикладных программ к драйверам устройств — это одна из функций операционной системы. Строго говоря, выпуская устройство, например модем, его разработчик прикладывает к нему несколько драйверов, предназначенных для основных операционных систем, как-то: Windows 95/98/Me/NT/2000, MS-DOS и т. п. В операционных системах MS-DOS драйверы устройств загружаются как резидентные программы, напрямую работающие с процессором и другими устройствами материнской платы. Здесь участие операционной системы сводится лишь к тому, чтобы предоставить пользователю возможность загрузки драйвера, — далее он сам перехватывает прерывания, используемые для обращения к устройству, и управляет его взаимодействием с вызывающей программой. Загрузка драйверов устройств может быть ручной (после первоначальной загрузки компьютера пользователь сам выдает команды на загрузку драйверов) или автоматической, когда команды на загрузку и настройку драйверов включаются в состав файлов, автоматически читаемых при загрузке компьютера. В MS-DOS такие файлы называются файлами конфигурации; их всего два — это файлы autoexec.bat и config.sys. В них прежде всего включают команды загрузки драйверов мыши, дисковода CD-ROM, звуковой карты, расширенной памяти (оперативная память, лежащая за пределами 1 Мбайт, рассматривается в MS-DOS как дополнительное устройство и требует специального драйвера), а также прочих устройств.

В таких операционных системах, как Windows 95 и др., операционная система берет на себя все функции по установке драйверов устройств и передаче им управления от приложений. Во многих случаях операционная система даже не нуждается в драйверах, полученных от разработчика устройства, а использует драйверы из собственной базы данных.

Наиболее современные операционные системы Windows позволяют управлять не только установкой и регистрацией программных драйверов устройств, но и процессом аппаратно-логического подключения. Каждое подключенное устройство может использовать до трех аппаратных ресурсов устройств материнской платы: адресов внешних портов процессора, прерываний процессора и каналов прямого доступа к памяти. Если устройство подключается к материнской плате через шину PCI, то есть техническая возможность организовать между ним и материнской платой обратную связь. Это позволяет операционной системе анализировать требования устройств о выделении им ресурсов и гибко реагировать на них, исключая захват одних и тех же ресурсов разными устройствами. Такой принцип динамического распределения ресурсов операционной системой получил название plug-and-play, а устройства, удовлетворяющие этому принципу, называются самоустанавливающимися.

Если же устройство подключается к устаревшей шине ISA и не является самоустанавливающимся, то в этом случае операционная система не может динамически выделять ему ресурсы, но, тем не менее, при распределении ресурсов для самоустанавливающихся устройств, она учитывает ресурсы, захваченные им.

 

Обслуживание компьютера

Предоставление основных средств обслуживания компьютера — одна из функций операционной системы. Обычно она решается внешним образом — включением в базовый состав операционной системы первоочередных служебных приложений.

Средства проверки дисков. Надежность работы дисков (особенно жесткого диска) определяет не только надежность работы компьютера в целом, но и безопасность хранения данных, ценность которых может намного превышать стоимость самого компьютера. Поэтому наличие средств для проверки дисков является обязательным требованием к любой операционной системе.

Средства проверки принято рассматривать в двух категориях: средства логической проверки, то есть проверки целостности файловой структуры, и средства физической диагностики поверхности. Логические ошибки, как правило, устраняются средствами самой операционной системы, а физические дефекты поверхности 'только локализуются — операционная система принимает во внимание факт повреждения магнитного слоя в определенных секторах и исключает их из активной работы.

Логические ошибки файловой структуры имеют два характерных проявления: это потерянные кластеры или общие кластеры. Потерянные кластеры образуются в результате неправильного (или аварийного) завершения работы с компьютером. Так, например, ни в одной операционной системе нельзя выключать компьютер, если на нем запущены приложения, осуществляющие обмен информацией с дисками. Кроме того, в операционных системах Windows также нельзя выключать компьютер, если не исполнена специальная процедура завершения работы с операционной системой. Механизм образования потерянных кластеров выглядит так:

• во время работы с файлом приложение манипулирует с кластерами, занимая или освобождая их, и регистрирует сведения об этом в FAГ-таблице, но не записывает полные сведения о файле в каталог;

• если при завершении работы с приложением происходит сохранение результатов деятельности, оно вносит окончательные изменения в Е4Г-таблицы и регистрирует данные, записанные в кластерах, как файл в каталоге;

• если при завершении работы с приложением файл уничтожается, информация не фиксируется в каталоге, а использованные кластеры освобождаются;

• если компьютер выключается до завершения работы с приложением, кластеры остаются помеченными как «занятые», но ссылка на них в каталоге не создается, так что согласно данным .РЛГ-таблицы этим кластерам не соответствует ни один файл.

Ошибка, связанная с потерянными кластерами, легко парируется средствами операционной системы. При этом можно либо полностью освободить данные кластеры, либо превратить их в полноценные файлы, которые можно просмотреть в поисках ценной информации, утраченной во время сбоя.

Ошибка, проявляющаяся как общие кластеры, характеризуется тем, что, согласно данным FAT-таблиц, два или более файлов претендуют на то, что их данные находятся в одном и том же месте диска. При нормальной работе такой ситуации быть не может, и это свидетельствует об ошибке в FAТ-таблицах. Причиной появления общих кластеров может стать самопроизвольное изменение данных в Е4Т-табли-цах или некорректное восстановление ранее удаленных данных с помощью внесистемных средств. Некорректность может быть обусловлена нарушением порядка операций восстановления данных или неадекватностью средств восстановления данных (например, использованием средств MS-DOS для восстановления файлов, записанных средствами Windows).

Ошибка, связанная с общими кластерами, парируется повторной записью обоих конфликтующих файлов. Один из них обязательно испорчен и подлежит последующему удалению, но велика вероятность того, что испорчены оба файла.

Дополнительно к вышеуказанным логическим ошибкам операционные системы Windows 95/98 и др. определяют логические ошибки, связанные с некорректной записью даты создания файла и с представлением «короткого» имени файла для заданного «длинного» имени.

 

Средства управления виртуальной памятью

Ранние операционные системы ограничивали возможность использования приложений по объему необходимой для их работы оперативной памяти. Так, например, без специальных драйверов (менеджеров оперативной памяти) операционные системы MS-DOS ограничивали предельный размер исполняемых программ величиной около 640 Кбайт.

Современные операционные системы не только обеспечивают непосредственный доступ ко всему полю оперативной памяти, установленной в компьютере, но и позволяют ее расширить за счет создания так называемой виртуальной памяти на жестком диске. Виртуальная память реализуется в виде так называемого файла подкачки. В случае недостаточности оперативной памяти для работы приложения часть ее временно опорожняется с сохранением образа на жестком диске. В процессе работы приложений происходит многократный обмен между основной установленной оперативной памятью и файлом подкачки. Поскольку электронные операции в оперативной памяти происходят намного быстрее, чем механические операции взаимодействия с диском, увеличение размера оперативной памяти компьютера всегда благоприятно сказывается на ускорении операций и повышении производительности всей вычислительной системы.

Операционная система не только берет на себя весь необходимый обмен данными между ОЗУ и диском, но и позволяет в определенной степени управлять размером файла подкачки вручную.

 

Средства кэширования дисков

Поскольку, как уже было отмечено, взаимодействие процессора с дисками компьютера происходит намного медленнее операций обмена с оперативной памятью, операционная система принимает специальные меры по сохранению части прочитанных с диска данных в оперативной памяти. В случае, если по ходу работы процессору вновь потребуется обратиться к ранее считанным данным или программному коду, он может найти их в специальной области ОЗУ, называемой дисковым кэшем. В ранних операционных системах функции кэширования диска возлагались на специальное внешнее программное средство, подключаемое через файлы конфигурации. В современных операционных системах эту функцию включают в ядро системы, и она работает автоматически, без участия пользователя, хотя определенная возможность настройки размера кэша за ним сохраняется.

 

Средства резервного копирования данных

Если на компьютере выполняется практическая работа, объем ценных (а зачастую и уникальных) данных нарастает с каждым днем. Ценность данных, размещенных на компьютере, принято измерять совокупностью затрат, которые может понести владелец в случае их утраты. Важным средством защиты данных является регулярное резервное копирование на внешний носитель. В связи с особой важностью этой задачи операционные системы обычно содержат базовые средства для выполнения резервного копирования.

 

Прочие функции операционных систем

Кроме основных (базовых) функций операционные системы могут предоставлять различные дополнительные функции. Конкретный выбор операционной системы определяется совокупностью предоставляемых функций и конкретными требованиями к рабочему месту.

Прочие функции операционных систем могут включать следующие:

• возможность поддерживать функционирование локальной компьютерной сети без специального программного обеспечения;

• обеспечение доступа к основным службам Интернета средствами, интегрированными в состав операционной системы;

• возможность создания системными средствами сервера Интернета, его обслуживание и управление, в том числе дистанционное посредством удаленного соединения;

• наличие средств защиты данных от несанкционированного доступа, просмотра и внесения изменений;

• возможность оформления рабочей среды операционной системы, в том числе и средствами, относящимися к категории мультимедиа; ч_

• возможность обеспечения комфортной поочередной работы различных пользователей на одном персональном компьютере с сохранением персональных настроек рабочей среды каждого из них;

• возможность автоматического исполнения операций обслуживания компьютера и операционной системы по заданному расписанию или под управлением удаленного сервера;

• возможность работы с компьютером для лиц, имеющих физические недостатки, связанные с органами зрения, слуха и другими.

Кроме всего вышеперечисленного, современные операционные системы могут включать минимальный набор прикладного программного обеспечения, которое можно использовать для исполнения простейших практических задач:

• чтение, редактирование и печать текстовых документов;

• создание и редактирование простейших рисунков;

• выполнение арифметических и математических расчетов;

• ведение дневников и служебных блокнотов;

• создание, передача и прием сообщений электронной почты;

• создание и редактирование факсимильных сообщений;

• воспроизведение и редактирование звукозаписи;

• воспроизведение видеозаписи;

• разработка и воспроизведение комплексных электронных документов, включающих текст, графику, звукозапись и видеозапись.

Этим возможности операционных систем не исчерпываются. По мере развития аппаратных средств вычислительной техники и средств связи функции операционных систем непрерывно расширяются, а средства их исполнения совершенствуются.

 

Страница: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 |