Имя материала: Экономика предприятия

Автор: Грузинов В.П.

19.2. максимизация прибыли

 

Систематическое получение прибыли является необходимой целью предпринимательской деятельности любого предприятия. Поэтому доминирующей проблемой для предприятия является максимизация прибыли, что означает разработку стратегии на систематическое увеличение прибыли и минимизацию издержек. Данная задача многоплановая, вот почему для своего решения она требует системного подхода.

Для принятия решений часто требуется знать сумму прибыли, которую получает предприятие в расчете на единицу продукции при данном объеме реализации и цене, диктуемой спросом. При определении продажной цены используют среднюю прибыль (An) и предельную прибыль (Мn):

 

  (19.1)

 

где Tn(q) — совокупная сумма прибыли на определенный товар за определенный период;

q — объем продаж.

Из этого следует, что максимизация прибыли связана с процессом приращения предпринимательской прибыли. Это, в свою очередь, означает, что в расчетах требуется использование предельных величин: предельной прибыли, предельного дохода и предельных издержек. Иными словами, прибыль максимизируется в точке, в которой любое, даже малое приращение объема реализации (выпуска) продукции оставляет прибыль без изменения, т.е. приращение прибыли при приращении объема (реализации) продукции равняется нулю. Математически это можно записать так:

 

Mn(q)=MR(q) – MC(q) = 0,  (19.2)

где Mn(q) — предельная прибыль от объема продукции;

MR(q) — предельный доход (выручка) от объема продукции;

МС(q) — предельные издержки от объема продукции.

Из формулы (19.2) следует, что прибыль максимизируется в том случае, когда предельные издержки равны предельному доходу:

 

MR(q) = MC(q).

 

Поясним это на примере работы консервного комбината. Данные о выпуске количества консервов, валовых постоянных издержках, относимых на соответствующее производство, валовых переменных издержках, относимых на соответствующий выпуск продукции, валовых издержках производства и обращения, а также результаты расчета средних и предельных издержек, указанные в тысячах рублях на единицу изделия, приведены в табл. 19.1 (цифры для удобства округлены).

Таблица l9.1

Расчет максимальной прибыли в зависимости от объема продукции, цены и издержек

 

Количество

изделий

Цена (руб./шт.), Р

Валовый доход (выручка) (тыс. руб.), TР

Валовые издержки (тыс. руб.), ТС

Валовая прибыль (тыс. руб.), М = гр. 3-— гр.4

Предельный доход (руб./шт.), MR

Предельные издержки (руб./шт.), МС

Предельная прибыль (руб./шт.), Мп

1

2

3

4

5

6

7

8

1000

2659

2659

2630

29

2659

2630

29

2000

2450

4900

3340

1560

2241

710

1531

3000

2241

6723

4020

2703

1833

880

1143

4000

2031

8124

5440

3584

1401

520

881

5000

1822

9110

5025

4085

986

485

501

6000

1613

9678

5600

4078

568

575

-7

7000

1484

9828

6420

3408

150

820

-670

8000

1195

9560

7615

1945

-268

1195

-1463

9000

986

8874

9310

-436

-686

1695

-2381

10000

777

7770

13675

-5905

-1104

4365

-5469

 

Графа 2 табл. 19.1 содержит данные о цене спроса, соответствующие количеству возможной реализации консервов. Функция спроса от цены получена на основе линейного уравнения

 

q = — 4,78р + 13712,1.

 

Коэффициент эластичности спроса в зависимости от изменения цены для разного количества продаж исчисляется по формуле:

 

        (19.3)

В количестве 3000 шт.

В количестве 6000 шт.

В количестве 8000 шт,

При больших объемах продаж спрос становится неэластичным. Предельные величины дохода (выручки), издержек и прибыли получаются путем вычитания из данных валового дохода (гр. 3), валовых издержек (гp. 4) и валовой прибыли (гр. 5) соответствующих значений из предыдущей строки.

Например, предельная прибыль:

для объема продаж 5000 шт.:  руб.

для объема продаж 7000 шт.:  руб.

Деление на 1000 необходимо потому, что предельные (приростные) показатели определяются в расчете на единицу продукции в рублях.

Для наглядности на основании данных табл. 19.1 построим графики (рис. 19.3 и 19.4).

 

 

 

Из табл. 19.1 и рис. 19.3 и 19.4 следует, что наибольшие объемы реализации не всегда дают наибольшие суммы прибыли. Максимальную сумму прибыли предприятие может получить при объеме реализации более 5 тыс. шт. и менее 6 тыс. шт. банок консервов. При этом цена одной банки составляет примерно 1600 руб. Если количество реализованных банок консервов превышает 6 тыс. шт., то сумма прибыли уменьшается, а при 9 тыс. шт. предприятие понесет убытки в размере 436 тыс. руб., которые при реализации 10 тыс. шт. могут возрасти почти до 6 млн. руб.

Предельные показатели позволяют более четко судить о скорости изменения их значений (рис. 19.4).

Точка пересечения предельного дохода MR(q) с предельными издержками MC(q) определяет максимум прибыли. В этой точке предельная прибыль равна нулю, а ее кривая пересекает ось абсцисс. За данными пределами начинаются убытки, которые будут снижать сумму валовой прибыли.

Для того чтобы решить вопрос максимизации прибыли, важно также знать, действует ли предприятие в условиях свободной конкуренции или монопольного рынка. Пищевые предприятия, в частности, реализуют свою продукцию в условиях свободной конкуренции. А это означает, что за цену реализации своей продукции оно принимает ту, которую задает рынок.

Итак, для предприятия максимизация прибыли заключается в выборе такого объема реализации продукции, при котором предельные издержки предприятия в производстве и при реализации равнялись бы рыночной цене. Математически это можно представить следующим образом:

 

Р = MC(q).     (19.4)

 

Иными словами, на рынке свободной конкуренции доход равен рыночной цене. Покажем это на примере рыбоперерабатывающего предприятия, выпускающего икру в банках. Данные о производстве, издержках, прибыли, а также о предельных величинах приведены в табл. 19.2.

 

Таблица 19.2

Экономические показатели и расчеты предельных величин, руб.

 

Выпуск банок, шт.

Цена, 1 шт.

Валовой доход (выручка), TR

Валовые издержки, ТС

Прибыль, TR- — TC

Предельный доход (шт.), MR =

Р

Предельные издержки (шт.), МС

Предельная прибыль, шт. гр.6— гр.7

1

2

3

4

5

6

7

8

0

135

0

7200

-7200

 

 

 

35

135

4725

9240

-4515

135

54

77

150

135

20 250

13 200

7050

135

34

101

210

135

38 350

15 840

12 510

135

44

91

250

135

33 750

18 000

15 750

135

54

81

270

135

36 450

19 680

16 770

135

84

51

288

135

38 880

21 312

17 586

135

91

44

305

135

41 175

22 920

18 255

135

95

40

316

135

45 525

24 360

18 165

135

144

-9

316

135

42 660

24 510

18 150

135

150

-15

317

135

42 795

24 672

18 123

135

162

-27

318

135

42 930

24 852

18 078

135

180

-45

319

135

43 065

25 056

18 009

135

204

-69

320

135

43 200

25 296

17 904

135

240

-105

 

Из табл. 19.2 следует, что предельный доход равен цене одной банки икры при приращении количества реализации в разных размерах (сравним графы 6 и 2). Иными словами, рыночная цена задается рынком (135 руб. за банку икры). Отличительная черта изменения валового дохода (выручки) от реализации банок икры на рынке свободной конкуренции состоит в том, что валовой доход выражается линейным уравнением с нулевым свободным членом и угловым коэффициентом, равным цене одной банки:

 

TR = 135 руб. q шт. = TR руб.

 

Максимальная прибыль получается при объемах реализации около 310 банок. По данным табл. 19.2 она составляет 18 255 руб. при реализации 305 банок. В интервале 305 — 315 банок предельная прибыль равна нулю. При дальнейшем росте объема реализации она становится отрицательной, т.е. каждая дополнительная единица приращения объема выпуска дает не увеличение, а уменьшение суммы прибыли (рис. 19.5).

 

 

Таким образом, при заданной рынком цене одной банки в размере 135 руб. предприятию выгоднее поддерживать реализацию на уровне, близком к 310 банкам. В этом случае оно может рассчитывать на получение наибольшей суммы прибыли.

 

Страница: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 |