Имя материала: Начальный курс финансовой математики

Автор: Медведев Г.А.

2.3 основная формула составного итога

 

Если P обозначает основную сумму в начале первого периода начисления процента и i является нормой процента за период конверсии, тогда процент, начисленный в конце первого периода, равен Pi и итог первого периода равен P + Pi или P(1 + i). Таким образом, итог периода конверсии в (1 + i) раз больше основной суммы этого периода. Подобные рассуждения показывают, что итог в конце любого периода конверсии в (1 + i) раз больше основной суммы этого периода конверсии, так что итог в конце второго периода равен

P(1 + i)(1 + i) = P(1 + i) 2 ,

а в конце n периодов конверсии имеем итоговую сумму, равную

S = P(1 + i)n (1)

Это   равенство   называется основной формулой сложного процента.

Получение всякого результата, связанного   со сложными процентами, прямо или косвенно использует эту формулу. Заметим, что в (1) используется четыре величины, так что если любые три из них известны, четвертая может быть найдена из этого уравнения.

 

Страница: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 |