Имя материала: Задачи и тесты по финансовой математике

Автор: Капитоненко Валерий Владимирович

5.2. типовые примеры

1. Полная доходность облигации.

Облигация номиналом 100000 руб. с купонной ставкой 8\% и сроком на 5 лет продавалась с дисконтом 20\%. Определить полную доходность этой облигации. Задачу решить двумя способами:

а)         опираясь на понятие среднегодового дохода;

б)         используя аналогию с инвестиционным проектом.

Решение

v          „           5-8000+20000  1ПЛЛЛ _ .

а)         среднегодовой доход =    =12000. По формуле

(5.4) найдем, что полная доходность равна:

12000 1ЛЛЛ/ лсо/

            100\% = 15\%;

80000

б)         пользуясь аналогией (5.1), определим полную доходность

как показатель внутренней нормы прибыли следующего Проекта:

(-80000; 8000; 8000; 8000; 8000; 108000). С помощью функции в

Excel определим полную доходность, вычислив ее значение:

/ЛЛ = 13,79\%.

Среднегодовая доходность акции. Инвестор приобрел за 2300 руб. привилегированную акцию номинальной стоимостью 2000 руб. с фиксированным размером дивиденда 15\% годовых. Через 5 лет (в течение которых дивиденды регулярно выплачивались) акция была им продана за 2100 руб. Определить конечную (среднегодовую) доходность по данной акции.

Решение

Конечная доходность (формула (5.6)):

2000.0,1542300-2100)75 ^^^ 2300

Текущая доходность акции.

АО в 2001 г. выпустило обыкновенные акции в количестве 100 тыс. штук номинальной стоимостью 100 руб. каждая. Инвестор «X» приобрел в 2002 г. пакет акций, состоящий из 100 штук, по цене 150 руб. за акцию. Рыночная стоимость одной акции в настоящее время - 300 руб. Определить:

а)         текущую доходность пакета акций инвестора X (без учета

налогов), если ежегодный дивиденд по акциям выплачивается в

размере 60 руб. на одну акцию;

б)         какова текущая доходность точно такого же пакета акций

для его потенциального покупателя Y?

Решение

а) очевидно, что текущие доходности пакета акций и одной акции совпадают. Подставляя данные задачи в соотношение (5.5), получим, что текущая доходность вложения инвестора нравна:

60100

•100\% = 40\%.

Исходя из равенства искомого показателя для пакета акций и для одной акции, можно не учитывать число акций. В этом случае текущая доходность вложения составит:

•100\% =40\%; 150

б) текущая доходность для инвестора Y (текущая доходность пакета) равна:

•100\% = 20\%. 300

 

Текущая доходность облигации.

Облигации с купоном 9,5\% продается по курсу 98\%.Чему равна ее текущая доходность? Решение

Согласно определению (5.2) текущая доходность составит:

^-100\%«9,7\%. 98

Сравнение ценных бумаг по доходности вложения. Одновременно эмитированы облигации государственного

займа для юридических лиц и депозитные сертификаты крупного, устойчиво работающего коммерческого банка. Условия выпуска облигаций следующие: период — 3 года, номинал -1000 руб., дисконт при эмиссии — 15\%, годовой доход — 10\%. Условия выпуска депозитных сертификатов: период обращения — 3 года, номинал — 1000 руб., начисления производятся по простой ставке с годовым доходом 22\%.

По государственным облигациям доход налогом не облагается, по депозитным сертификатам доход облагается налогом по ставке 15\%.

Что выгоднее для инвестора: облигация или депозитный сертификат? Решение

По государственным облигациям доход (налогом не облагается) составит:

100-3 + 150 = 450,

а по депозитным сертификатам с учетом налогообложения (15\%):

(220-3)-0,85 = 561.

Доходность государственных облигаций равна: 450

-^-«0,176=17,6\%. 850

Доходность депозитных сертификатов составит: 561

—^—=0,187=18,7\%. 1000

Отсюда понятно, что для инвестора выгоднее приобрести сертификат.

Примечание. Владельцу ценных бумаг, который реинвестирует получаемые по ним доходы, имеет смысл для оценки доходности исходить из сложного процента и использовать метод дисконтирования денежных потоков. Для этого следует рассмотреть следующие потоки платежей:

-(-850; 100; 100; 1100) -для облигации, IRR* 0,17 = 17\%; -(-1000; 187; 187; 1187)-для сертификата, IRR« 0,19 = 19\%.

Внутренняя ставка доходности вложения в сертификат больше (19\% > > 17\%), поэтому он выгоднее.

6. Оценка курса облигации.

Определить ориентировочную рыночную стоимость и оценку курса для корпоративной облигации номиналом 1000 руб. при условии, что срок погашения через 3 года, купонная ставка и ставка банковского процента — 10 и 4\% годовых.

Решение

Для расчета следует использовать формулу (5.13):

п   100    100    100    1000   ЛЛССС с

Р =      +          - +        -+         -«1166,5 руб.

1,04   1,042   1,043 1,043

Тот же результат можно найти, исходя из соотношения (5.17), в котором:

К = 1000/1,043= 888,996; л//= 0,1/0,04 = 2,5; jV= 1000; /> = 888,996 + 2,5 • (1000 - 888,996)« 1166,5руб. Переходя к процентам от номинала, получим оценку курса: Р(\%) = 116,65\%.

Оценка курса акции.

Балансовая прибыль акционерного общества с уставным фондом 2 млн руб., полученная исключительно от производственной деятельности, составила 10 млн руб. Общее собрание акционеров решило, что оставшаяся после уплаты налогов прибыль распределится следующим образом: 20\% - на развитие производства; 80\% - на выплату дивидендов. Каков должен быть (ориентировочно) курс акций данного АО, если банковский процент составляет 16\%, номинал акций — 100 руб., а ставка налога на прибыль — 24\%?

Решение

Количество акций п = 2000000/100 = 20000 шт. Прибыль после уплаты налогов составит:

П = 0,76 • 107 = 7,6 млн руб.

На выплату акционерам пойдет сумма:

D = 0,8 • 7600000 = 6080000 руб.

Выплата дивидендов на одну акцию:

,  6080000 л

d =       = 304 руб.

20000

Согласно (5.18) ориентировочный курс акции составит: 304

Р = —= 1900 руб. 0,16

Оценка курсовой стоимости депозитного сертификата. Депозитный сертификат был выпущен на сумму 1000 руб. под

12\% годовых. Через полгода текущая ставка уменьшилась до 6\%. Какой должна стать теоретически справедливая цена сертификата на этот момент? Решение

Курсовая стоимость сертификата Р за полгода до погашения определяется величиной, финансово эквивалентной сумме погашения. При погашении сертификата его владелец получит 1120 руб.(1000 • 1,12). Отсюда получим:

Р = 1120/(1 + 0,06)1/2« 1087,8 руб.

«Справедливая» цена продажи акции.

Инвестор приобрел акцию в начале текущего финансового года за 1000 руб. и продает ее по прошествии 4 мес. Определите примерную стоимость, по которой совершается продажа, если ожидаемая прибыль в расчете на акцию по итогам года составляет 120 руб. Ситуация на финансовом рынке и положение компании с начала года существенно не изменились. Решение

Продавец акции заинтересован в том, чтобы оправдать вложенный капитал и получить полагающийся ему за 4 месяца дивиденд. Следовательно, примерная стоимость акции:

Р = 1000 + (120/12). 4 = 1040 руб.

10. Внутренняя доходность «вечной» облигации.

«Вечная» облигация, приносящая 4,5\% фиксированного годового дохода, куплена по курсу 90\%. Какова эффективность вложения (сложная ставка годового процента), если купонные выплаты по облигации производятся поквартально?

Решение

Определим поквартальную внутреннюю доходность j беско-

4,5\%

нечного потока периодических купонных выплат по ставке ——

4

с первоначальной разовой инвестицией 90\% от номинала. Приравнивая текущую стоимость потока доходов величине вклада,

4,5\%

получим следующее уравнение:    4   = 90\%. Откуда j = 0,0125.

j

Переходя от квартального к сложному годовому проценту, найдем эффективную доходность вложения:

ге/=( + 0,0125)4- 1=0,0509 =5,09\%.

 

Страница: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 |