Имя материала: Финансовый анализ: методы и процедуры

Автор: Ковалев Валерий Викторович

4.6. методы финансовых вычислений

 

4.6.1.

Логика финансовых операций в рыночной экономике

Подавляющее большинство решений, которые приходится принимать высшему и среднему управленческому персоналу, — это решения финансового характера. Логика подобных решений выражается известным соотношением: доходы, которые ожидаются в результате принятия данного решения, должны определенным образом превосходить совокупные затраты, связанные с его подготовкой и реализацией. Безусловно, некоторые решения могут иметь иное обоснование, нежели текущая выгодность, среди них — отсутствие убытка, социальный аспект, действие факторов, не поддающихся элиминированию, осознанная неэффективность в краткосрочном плане в сочетании с ожидаемой прибыльностью в долгосрочной перспективе и т.п. Тем не менее решения, основанные на денежных оценках, без сомнения преобладают.

Решения финансового характера в подавляющем большинстве случаев не являются одномоментными в плане проявления вызываемых ими последствий. Иными словами, здесь весьма важную, если не решающую, роль играет фактор времени. Формализованная основа подобных решений ■— так называемые финансовые вычисления, имеющие давние традиции в том числе и в отечественной учетно-аналитической практике (краткий экскурс в историю становления финансовых вычислений можно найти в работе [Ковалев, Уланов]).

финансовые вычисления базируются на понятии временнбй стоимости денег; именно с их помощью удается принимать управленческие решения, эффективные во временном аспекте. Подобными вычислениями обязаны аладеть как лица, принимающие решения, так и их помощники — аналитики.

Несмотря на кажущуюся простоту расчетов, методы финансовых вычислений исключительно важны именно в практической плоскостн и, кроме того, они не приходят к специалисту автоматически вместе с дипломом о высшем или специальном образовании. Невозможно стать финансовым менеджером или аналитиком лишь читая общетеоретические монографии, учебники и руководства — нужна рутинная вычислительная практика, умение ориентироваться в методах, привлекаемых для получения ряда оценок, которые можно использовать как формализованное обоснование принимаемого решения в области кредитования и финансирования.

Без сомнения, финансовые вычисления входят в число краеугольных элементов процесса управления финансами предприятия и используются в различных его разделах. Наиболее интенсивно они применяются для оценки инвестиционных проектов, в операциях на рынке ценных бумаг, в худо-заемных операциях, в оценке бизнеса и др.

Ключевыми моментами методов оценки эффективности финансовых операций, определяющими их логику, яаляются следующие утверждения:

практически любую финансово-хозяйственную операцию можно выразить в терминах финансов;

в подавляющем большинстве случаев собственно операции или их последствия «растянуты» во времени;

с каждой операцией можно увязать некоторый денежный поток;

денежные средства должны эффективно оборачиваться, т.е. с течением времени приносить определенный доход;

элементы денежного потока, относящиеся к разным моментам времени, без определенных преобразований несопоставимы;

преобразования элементов денежного потока осуществляются путем применения операций наращения и дисконтирования;

наращение и дисконтирование могут выполняться по различным схемам и с различными параметрами.

В последующих разделах книги приведенные утверждения будут обоснованы, а следование им продемонстрировано на примерах.

 

4.6.2.

Операции наращения и дисконтирования

Логика построения основных алгоритмов в операциях финансового характера достаточно проста и основана на следующей идее. Простейшим видом финансовой сделки является однократное предоставление в долг некоторой суммы PV с условием, что через некоторое время t будет возвращена большая сумма FV. Как известно, результативность подобной сделки может быть охарактеризована двояко: либо с помощью получаемого прироста Д — FV— PV, либо путем расчета некоторого относительного показателя. Абсолютные показатели чаше всего не подходят для подобной оценки ввиду их несопоставимостн в пространственно-временном аспекте. Поэтому пользуются специальным коэффициентом — ставкой. Этот показатель рассчитывается отношением приращения исходной суммы к базовой величине, в качестве которой можно брать либо PV (получим процентную ставку), либо FV (получим учетную ставку).

Итак, в любой простейшей финансовой сделке всегда присутствуют три величины: FV, РУ и ставка г, две из которых заданы, а одна является искомой. Процесс, в котором заданы исходная сумма и процентная ставка, в финансовых вычислениях называется процессом наращения. Процесс, в котором заданы ожидаемая в будущем к получению (возвращаемая) сумма и ставка (коэффициент дисконтирования), называется процессом дисконтирования. В первом случае речь идет о движении денежного потока от настоящего к будущему, во втором — о движении от будущего к настоящему. Необходимо отметить, что в качестве коэффициента дисконтирования может использоваться либо процентная ставка (математическое дисконтирование), либо учетная ставка (банковское дисконтирование).

Экономический смысл финансовой операции наращения состоит в определении величины той суммы, которой будет или желает располагать инвестор по окончании этой операции. Поскольку, как следует из определения процентной ставки г,

FV = PV + PV ■ г и PV ■ г > О,

то видно, что время генерирует деньги или, что равнозначно, деньги имеют временную ценность.

Экономический смысл дисконтирования заключается во временном упорядочении денежных потоков различных временных периодов. Коэффициент дисконтирования показывает, какой ежегодный процент возврата хочет (или может) иметь инвестор на инвестируемый им капитал. В этом случае искомая величина /^показывает как бы текущую, «сегодняшнюю» стоимость будущей величины FV.

Ссудо-заемные операции, составляющие основу коммерческих вычислений, имеют давнюю историю. Именно в этих операциях и проявляется прежде всего необходимость учета временной ценности денег.

Предоставляя свои денежные средства в долг, их владелец получает определенный доход в виде процентов, начисляемых по некоторому алгоритму в течение определенного промежутка времени. Поскольку стандартным временным интервалом в финансовых операциях является один год, наиболее распространен вариант, когда процентная ставка устанавливается в виде годовой ставки, подразумевающей однократное начисление процентов по истечении года после получения ссуды. Известны две основные схемы дискретного начисления: схема простых и схема сложных процентов.

Схема простых процентов предполагает неизменность базы, с которой происходит начисление. Пусть исходный инвестируемый капитал равен Р; требуемая доходность — г (в долях единицы). Считается, что инвестиция сделана на условиях простого процента, если инвестированный капитал ежегодно увеличивается на величину Рг. Таким образом, размер инвестированного капитала через п лет (R„) будет равен:

Rn = P + Pr+...+Pr = P(l+nr). (4.18)

Считается, что инвестиция сделана на условиях сложного процента, если очередной годовой доход исчисляется не с исходной величины инвестированного капитала, а с общей суммы, включающей также и ранее начисленные и невостребованные инвестором проценты. В этом случае происходит капитализация процентов по мере их начисления, т.е. база, с которой начисляются проценты, все время возрастает. Следовательно, размер инвестированного капитала к концу л-го года будет равен:

Fn = P(l+rf. (4.19)

Несложно показать, что в случае ежегодного начисления процентов для лица, предоставляющего кредит:

более выгодной является схема простых процентов, если срок ссуды менее одного года (проценты начисляются однократно в конце периода);

более выгодной является схема сложных процентов, если срок ссуды превышает один год (проценты начисляются ежегодно);

обе схемы дают одинаковые результаты при продолжительности периода один год и однократном начислении процентов.

Схема простых процентов используется в практике банковских расчетов при начислении процентов по краткосрочным ссудам со сроком погашения до одного года. В этом случае в качестве показателя п берется величина, характеризующая удельный вес длины подпериода (дни, месяц, квартал, полугодие) в обшем периоде (год). /Длина различных временных интервалов в расчетах может округляться: месяц — 30 дней; квартал — 90 дней; полугодие — 180 дней; год — 360 (или 365) дией. Другой весьма распространенной операцией краткосрочного характера с использованием формулы простых процентов является операция по учету векселей банком. В этом случае пользуются формулами:

PV = FV ■ {1 —/• d) или PV = FV ■ (1 — t/T- d), (4.20)

где  d — годовая дисконтная ставка в долях единицы;

/ — продолжительность финансовой операции в днях; Т — количество дней в году;

/ — относительная длина периода до погашения ссуды (отметим, что операция имеет смысл, когда число в скобках неотрицательно).

Использование в расчетах сложного процента в случае многократного его начисления более логично, поскольку в этом случае капитал, генерирующий доходы, постоянно возрастает. При применении простого процента доходы по мере их начисления целесообразно снимать для потребления или использования в других инвестиционных проектах или текущей деятельности.

Формула сложных процентов является одной из базовых формул в финансовых вычислениях, поэтому для удобства пользования значения множителя (7 + г)", называемого мультиплицирующим множителем для единичного платежа и обеспечивающего наращение стоимости, табулированы для различных значений гил (эту и другие финансовые таблицы, упоминаемые в данном разделе, можно найти в литературе по финансовому менеджменту и анализу, например в [Ковалев, Уланов]). Тогда формула алгоритма наращения по схеме сложных процентов переписывается следующим образом:

Fn = Р ■ FMI(r,n), где FMl(r.n) = (1+г)" — мультиплицирующий множитель.

Экономический смысл множителя FMl(r,ri) состоит в следующем: он показывает, чему будет равна одна денежная единица (один рубль, один доллар, одна иена и т.п.) через п периодов при заданной процентной ставке г. Подчеркнем, что при пользовании финансовыми таблицами необходимо следить за соответствием длины периода и процентной ставки. Так, если базисным периодом начисления процентов является квартал, то в расчетах должна использоваться квартальная ставка.

В практике финансовых и коммерческих расчетов нередко оговаривается величина годового процента и частота начисления, отличная от ежегодной. В этом случае расчет ведется по формуле сложных процентов по подынтервалам и по ставке, равной пропорциональной доле исходной годовой ставки по формуле

F„ = P- (1 +г/т)кт, (4.21)

где г — объявленная годовая ставка; т — количество начислений в году; к — количество лет.

l'1'- ,

Достаточно обыденными являются финансовые контракты, заключаемые на период, отличающийся от целого числа лет, причем проценты могут начисляться не обязательно один раз в год (подпериод, определяющий частоту начисления процентов, назовем базовым). В этом случае можно воспользоваться одним из двух методов:

схема сложных процентов:

Fn = Р ■ (1 + r/m)w+f; (4.22)

смешанная схема (используется схема сложных процентов для целого числа базовых подпериодов и схема простых процентов для дробной части базового подпериода):

1      F„ = Р-(I+r/mf (1+fr/m)t (4.23)

где  w — целое число базовых подпериодов в финансовой операции;

/ — дробная часть базового подпериода; ■'      г — годовая ставка;

т — количество начислений в году.

Поскольку / < /, то (1 + / г) > (1 + г/, следовательно, наращенная сумма будет больше при использовании смешанной схемы.

В финансовых контрактах могут предусматриваться различные схемы начисления процентов. При этом, как правило, оговаривается номинальная процентная ставка, обычно годовая. Эта ставка, во-первых, не отражает реальной эффективности сделки и, во-вторых, не может быть использована для сопоставлений. Для того чтобы обеспечить сравнительный анализ эффективности таких контрактов, необходимо выбрать некий показатель, который был бы универсальным для любой схемы начисления. Таким показателем является эффективная годовая процентная ставка ге, обеспечивающая переход от Р к F„ при заданных значениях этих показателей и однократном начислении процентов и рассчитываемая по формуле

re = (I + г/т) т — 1. (4.24)

Из формулы (4.24) следует, что эффективная ставка зависит от количества внутригодовых начислений, причем с ростом т она увеличивается. Кроме того, для каждой номинальной ставки можно найти соответствующую ей эффективную ставку; две эти ставки совпадают лишь при т = 1. Именно ставка ге является критерием эффективности финансовой сделки и может быть использована для пространственно-временных сопоставлений.

Понимание роли эффективной процентной ставки чрезвычайно важно для финансового менеджера. Дело в том, что принятие решения о привлечении средств, например банковской ссуды, на тех или иных условиях делается чаще всего исходя из приемлемости предлагаемой процентной ставки, которая в этом случае характеризует относительные расходы заемщика. В рекламных проспектах непроизвольно или умышленно внимание на природе ставки обычно не акцентируется, хотя в подавляющем числе случаев речь идет о номинальной ставке, которая может весьма существенно отличаться от эффективной ставки.

Оценивая целесообразность финансовых вложений в тот или иной вид бизнеса, исходят из того, является это вложение более прибыльным (при допустимом уровне риска), чем вложения в государственные ценные бумаги, или нет. Используя несложные методы, пытаются проанализировать будущие доходы при минимальном, «безопасном» уровне доходности.

Основная идея этих методов заключается в оценке будущих поступлений F„ (например, в виде прибыли, процентов, дивидендов) с позиции текущего момента. При этом, сделав финансовые вложения, инвестор обычно руководствуется тремя посылами: (а) происходит перманентное обесценение денег (инфляция); (б) темп изменения цен на сырье, материалы и основные средства, используемые предприятием, может существенно отличаться от темпа инфляции; (в) желательно периодическое начисление (или поступление) дохода, причем в размере, не ниже определенного минимума. Базируясь на этих посылах, инвестор должен оценить, какими будут его доходы в будущем, какую максимально возможную сумму допустимо вложить в данное дело исходя из прогнозируемой его рентабельности.

Базовая расчетная формула для такого анализа является следствием формулы (4.19):

P = -^ = F»-FM2(r'n)> (4-25)

где F„ — доход, планируемый к получению в и-м году;

Р — приведенная (сегодняшняя, текущая) стоимость, т.е. оценка величины

F„ с позиции текущего момента; г — коэффициент дисконтирования.

 

Экономический смысл такого представления заключается в следующем: прогнозируемая величина денежных поступлений через и лет (F„) с позиции текущего момента будет меньше и равна Р (поскольку знаменатель дроби больше единицы). Это означает также, что для инвестора сумма Р в данный момент времени и сумма F„ через и лет одинаковы по своей ценности. Используя эту формулу, можно приводить в сопоставимый вид оценку доходов от инвестиций, ожидаемых к поступлению в течение ряда лет. Легко видеть, что в этом случае коэффициент дисконтирования численно равен процентной ставке, устанавливаемой инвестором, т.е. тому относительному размеру дохода, который инвестор хочет или может получить на инвестируемый им капитал.

Множитель FM2(r,k) = ll(]+rf называется дисконтирующим множителем для единичного платежа, его значения также табулированы. Экономический смысл дисконтирующего множителя FM2(r,k) заключается в следующем: он показывает «сегодняшнюю» цену одной денежной единицы будущего, т.е. чему с позиции текущего момента равна одна денежная единица (например, один рубль), циркулирующая в сфере бизнеса к периодов спустя от момента расчета, при заданных процентной ставке (доходности) г и частоте начисления процента. Термин «сегодняшняя стоимость» не следует понимать буквально, поскольку дисконтирование может быть выполнено на любой момент времени, не обязательно совпадающий с текущим моментом.

 

1 4.6.3.

<ї!    Денежные потоки и их оценка

Одним из основных элементов финансового анализа вообще и оценки инвестиционных проектов в частности является оценка денежного потока Сі, С2, ... , С„, генерируемого в течение ряда временных периодов в результате реализации какого-либо проекта или функционирования того или иного вида активов. Элементы потока Q могут быть либо независимыми, либо связанными между собой определенным алгоритмом. Временные периоды чаше всего предполагаются равными. Кроме того, для простоты изложения материала в этой главе имеется в виду, что элементы денежного потока являются однонаправленными, т.е. нет чередования оттоков и притоков денежных средств. Также считается, что генерируемые в рамках одного временного периода поступления имеют место либо в его начале, либо в его конце, т.е. они не распределены внутри периода, а сконцентрированы на одной из его границ. В первом случае поток называется потоком пренумерандо, или авансовым, во втором -— потоком постнумерандо (рис. 4.2).

 

а) Поток пренумерандо       б) Поток постнумерандо

Сі   С2  Сз   С4   С5     С)  Сг  Сз  С4 С5

t At a t . .   , t k I I t

012345 0123456 Рис. 4.2. Графическое представление потоков постнумерандо и пренумерандо

 

На практике большее распространение получил поток постнумерандо, в частности, именно этот поток лежит в основе методик анализа инвестиционных проектов. Некоторые объяснения этому можно дать исходя из общих принципов учета, согласно которым принято подводить итоги и оценивать финансовый результат того или иного действия по окончании очередного отчетного периода. Что касается поступления денежных средств в счет оплаты, то на практике оно чаще всего распределено во времени неравномерно, и потому удобнее условно отнести все поступления к концу периода. Благодаря этому соглашению формируются равные временные периоды, что позволяет разработать удобные формализованные алгоритмы оценки. Поток пренумерандо имеет значение при анализе различных схем накопления денежных средств для последующего их инвестирования.

Оценка денежного потока может выполняться в рамках решения двух задач: а) прямой, т.е. проводится оценка с позиции будущего (реализуется схема нарашения); б) обратной, т.е. проводится оценка с позиции настоящего (реализуется схема дисконтирования).

Прямая задача предполагает суммарную оценку наращенного денежного потока, т.е. в ее основе лежит будущая стоимость. В частности, если денежный поток представляет собой регулярные начисления процентов на вложенный капитал (Р) по схеме сложных процентов, то в основе суммарной оценки наращенного денежного потока лежит формула (4.19).

Несложно показать, что будущая стоимость исходного денежного потока постнумерандо FVpst может быть оценена как сумма наращенных поступлений, т.е. в общем виде формула имеет вид

 

= £с* <1+ (4.26)

 

Обратная задача предполагает суммарную оценку дисконтированного (приведенного) денежного потока. Поскольку отдельные элементы денежного потока генерируются в различные временные интервалы, а деньги имеют временную ценность, непосредственное их суммирование невозможно. Приведение денежного потока к одному моменту времени осуществляется с помощью формулы (4.25). Основным результатом расчета является определение общей величины приведенного денежного потока. Используемые при этом расчетные формулы различны в зависимости от вида потока — постнумерандо или пренумерандо. Именно обратная задача является основной при оценке инвестиционных проектов.

В частности, приведенная стоимость денежного потока постнумерандо PVpSi в общем случае может быть рассчитана по формуле ',

 

■г-

Несложно показать, что для потоков пренумерандо формулы (4.26) и (4.27) трансформируются следующим образом:

FVPre = FVps, ■ (7+r); (4.28)

 

PVPre = PVPSI ■ (V+r). (4.29)

Необходимо отметить, что ключевым моментом в рассмотренных схемах является молчаливая предпосылка о том, что анализ ведется с позиции «разумного инвестора», т.е. инвестора, не накапливающего полученные денежные средства в каком-нибудь сундуке, подобно небезызвестному Плюшкину, а немедленно инвестирующего их с целью получения дополнительного дохода. Именно этим объясняется тот факт, что при оценке потоков в обоих случаях, т.е. и при наращении, и при дисконтировании, предполагается капитализация по схеме сложных процентов.

Одним из ключевых понятий в финансовых и коммерческих расчетах является понятие аннуитета. Логика, заложенная в схему аннуитетных платежей, широко используется при оценке долговых и долевых ценных бумаг, в анализе инвестиционных проектов, а также в анализе аренды.

Аннуитет представляет собой частный случай денежного потока. Известны два подхода к его определению. Согласно первому подходу аннуитет представляет собой однонаправленный денежный поток, элементы которого имеют место через равные временные интервалы. Второй подход накладывает дополнительное ограничение, а именно: элементы денежного потока одинаковы по величине. В дальнейшем изложении материала мы будем придерживаться именно второго подхода. Если число равных временных интервалов ограничено, аннуитет называется срочным. В этом случае

С = С2=... = Са = А.

Для оценки будущей и приведенной стоимости аннуитета можно пользоваться вышеприведенными формулами, вместе с тем благодаря специфике аннуитетов в отношении равенства денежных поступлений они могут быть существенно упрощены.

В частности, для решения прямой задачи оценки срочных аннуитетов постнумерандо и пренумерандо при заданных величинах регулярного поступления (А) и процентной ставке (г) можно воспользоваться формулами (4.30) и (4.31):

FV^t = A-FM3(r,n); (4.30)

FV"pte - FVj^, ■ (1 + г) = А - FM3(r,n) ■ (1 + г),    (4.31)

где

FM3(/-,n)=(1 + r)""1. (4.32) г

Экономический смысл FM3(r,n), называемого мультиплицирующим множителем для аннуитета, заключается в следующем: он показывает, чему будет равна суммарная величина срочного аннуитета в одну денежную единицу (например, один рубль) к концу срока его действия. Предполагается, что производится лишь начисление денежных сумм, а их изъятие может быть сделано по окончании срока действия аннуитета. Множитель FM3(r,ri) часто используется в финансовых вычислениях, и поскольку легко заметить, что его значения в общем виде зависят лишь от г и л, они также табулированы.

Для решения обратной задачи оценки срочных аннуитетов постнумерандо и пренумерандо, являющейся основной при анализе инвестиционных проектов, денежные притоки которых имеют вид аннуитетных по-стунлений, можно воспользоваться формулами (4.33) и (4.34):

PV° =A-FM4(r\%,n);

(4.33)

PV' = PV" - (1 + г) = А ■ FM4(r,n) - (1 + г),

(4.34)

где

Подпись: пПодпись: 1FM4(r,n) = X

~(1 + г)

1-0 + /-)

Г

(4.35)

 

Экономический смысл FM4(r,ri), называемого дисконтирующим множителем для аннуитета, заключается в следующем: он показывает, чему равна с позиции текущего момента величина аннуитета с регулярными денежными поступлениями в размере одной денежной единицы (например, один рубль), продолжающегося п равных периодов с заданной процентной ставкой г. Значения этого множителя также табулированы.

При выполнении некоторых расчетов используется техника оценки бессрочного аннуитета. Аннуитет называется бессрочным, если денежные поступления продолжаются достаточно длительное время (в западной практике к бессрочным относятся аннуитеты, рассчитанные на 50 и более лет).

В этом случае прямая задача смысла не имеет. Что касается обратной задачи, то ее решение для аннуитета постнумерандо делается на основе формулы

(4.36)

 

Приведенная формула используется для оценки целесообразности приобретения бессрочного аннуитета. В этом случае известен размер годовых поступлений; в качестве коэффициента дисконтирования г обычно принимается гарантированная процентная ставка (например, процент, предлагаемый государственным банком). Сводку формул и методов прикладной финансовой математики, а также примеры их использования можно найти [Ковалев, Уланов].

Страница: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 |